Week #11

Algebra V - Galois theory

Nov 29, 2024

Problem 1. Let K be a field, and let $L = K(\alpha)$ be a field extension of K. Let f(x) be the minimal polynomial of α (over K). Assume that f has degree n and prove that

$$\Delta(f) = (-1)^{\frac{n(n-1)}{2}} N_{L/K}(f'(\alpha)),$$

where f' denotes the (formal) derivative of f.

Problem 2. For each of the following polynomials $f(x) \in \mathbb{Q}[X]$, compute the Galois group of the extension $SF_{\mathbb{Q}}(f)/\mathbb{Q}$.

(i)
$$f(x) = x^4 + x^3 + x^2 + 1$$
.

(ii)
$$f(x) = x^4 - 4x^3 + 4x^2 + 6$$
.

Problem 3. For $\alpha \in \mathbb{Q}$, let $f_{\alpha}(x) = x^4 + x^3 + x^2 + x + \alpha$ and let G_{α} denote the Galois group of the extension $SF_{\mathbb{Q}}(f_{\alpha})/\mathbb{Q}$. Find four integers $\alpha_1, \alpha_2, \alpha_3$ and α_4 such that the corresponding groups G_{α_i} are pairwise distinct (not isomorphic).

Problem 4. Let p be a prime and let $n \geq 4$. Prove that there does not exist a polynomial $f \in \mathbb{F}_p[x]$ of degree n such that $SF_{\mathbb{F}_p}(f_{\alpha})/\mathbb{F}_p$ has Galois group isomorphic to A_n or S_n . What happens if n = 3?

Problem 5. Consider the polynomial $f(x) = x^5 + 20x + 16 \in \mathbb{Q}[x]$. It is known that the Galois group of the extension $SF_{\mathbb{Q}}(f_{\alpha})/\mathbb{Q}$ has order at least 15. Prove that this group must be (isomorphic to) A_5 .