Worksheet #5

Algebra V - Galois theory

October 11, 2024

Problem 1. In what follows, let $L = SF_K(f)$ for some $f \in K[x]$. Determine Gal(L/K) and find all intermediate subfields of L/k.

- (i) $K = \mathbb{Q} \text{ and } f(x) = x^4 7$
- (ii) $K = \mathbb{F}_5$ and $f(x) = x^4 7$
- (iii) $K = \mathbb{F}_2$ and $f(x) = x^6 + 1$
- (iv) $K = \mathbb{Q}$ and $f(x) = x^8 1$

Problem 2. Let L/K be a (finite) Galois extension such that $Gal(L/K) = A_4$. Prove that there is no intermediate field $K \subset F \subset L$ satisfying that [F : K] = 2.

Problem 3. Give examples of finite field extensions L/K with

- (i) L/K normal but not separable,
- $(ii)\ L/K\ separable\ but\ not\ normal,$
- (iii) [L:K]=4 and there is no intermediate field $K \subset F \subset L$ with [F:K]=2.

Problem 4. Let $f(x) \in \mathbb{Q}[x]$ be of prime degree p and assume that f has exactly two non-real roots (in \mathbb{C}). Prove that $\operatorname{Gal}(SF_{\mathbb{Q}}(f)/\mathbb{Q}) = S_p$ (the symmetric group on p letters).

Problem 5. Let $f(x) = x^4 + ax^2 + b$ be an irreducible quartic polynomial in $\mathbb{Q}[x]$, with roots $\pm \alpha, \pm \beta$ and let $L = SF_{\mathbb{Q}}(f)$.

- (i) Prove that $Gal(L/\mathbb{Q})$ is isomorphic to a subgroup of D_8 .
- (ii) Prove that this subgroup is isomorphic to C_4 if and only if $\alpha/\beta \beta/\alpha \in \mathbb{Q}$.