Worksheet #3

Algebra V - Galois theory

September 27, 2024

Problem 1. Let $L = \mathbb{Q}(\sqrt[4]{2})$ and $F = \mathbb{Q}(\sqrt{2})$.

- (i) Determine whether or not each of the three extensions L/\mathbb{Q} , F/\mathbb{Q} and L/F is normal. You must justify your answer.
- (ii) Find a \mathbb{Q} -homomorphism $\varphi: F \to F$ that does not extend to a \mathbb{Q} -homorphism $\tilde{\varphi}: L \to L$.

Problem 2. Let L/K be a finite field extension of degree m, and let $f \in K[x]$ be irreducible (over K) of degree n. Prove that if gcd(m,n) = 1, then f is also irreducible over L.

Problem 3. Give an example of fields $K \subset F \subset L$ such that the extensions L/F and F/K are normal, but the extension L/K is not.

Problem 4. Let L/K be a finite field extension and assume that char(K) does not divide [L:K]. Prove that L is separable over K.

Problem 5. Let L be a field and fix $\sigma \in Aut(L)$ of infinite order. Let $K := \{a \in L \mid \sigma(a) = a\}$ be the fixed field of σ . Prove that if L/K is algebraic, then L is normal over K.

Problem 6. Let $K \subset F \subset L$ be fields and prove that the following statements are true.

- (i) If L/K is a separable extension, then L/F and F/K are separable as well.
- (ii) If L/F is normal and F/K is purely inseparable, then L/K is normal.

Problem 7. Give three examples of a field extension L/K which is neither normal nor separable.

Problem 8. Let L/K be a finite field extension and pick $\alpha \in L$. The trace (resp. the norm) of α is defined to be the trace (resp. the determinant) of the linear map $M_{\alpha}: L \to L$ of K-vector spaces given by multiplication by α . Assume that $d = [L: K(\alpha)]$ and write

$$f := min_K(\alpha) = x^n + a_{n_1}x^{n-1} + \ldots + a_1x + a_0 \in K[x].$$

Prove that

- (i) the characteristic polynomial of M_{α} is f^d , and
- (ii) the trace (resp. the norm) of α is the number db_{n-1} (resp. b_0^d), where $b_i := (-1)^{n-i}a_i$.