Worksheet #2

Algebra V - Galois theory

September 20, 2024

Problem 1. Let L/K be a finite field extension of degree two. Prove that the following statements are true.

- (i) If $char(k) \neq 2$, then L = K(x) for some $x \in L$ such that $x^2 \in K$.
- (ii) if char(k) = 2, then either L = K(x) with $x^2 \in K$, or L = K(x) with $x^2 + x \in K$.

Problem 2. Let L/K be a finite field extension whose degree is a prime number. Prove that there are no intermediate fields between K and L.

Problem 3. Let $K(\alpha)/K$ be a finite field extension of odd degree.

- (i) Prove that $K(\alpha) = K(\alpha^2)$.
- (ii) Give an example to show that the previous statement (i.e., (i)) can be false if $[K(\alpha):K]$ is even.

Problem 4. Let L/K be an algebraic field extension, denote the group of K-automorphisms of L by Aut(L/K) and assume that for every $\alpha \in L \setminus K$ we can find $\varphi \in Aut(L/K)$ such that $\varphi(\alpha) \neq \alpha$. Pick $\beta \in L$ and let $f \in K[x]$ be the corresponding minimal polynomial. Prove that the group Aut(L/K) acts transitively on the set of roots of f.

Problem 5. Let $K = \mathbb{F}_2 = \{0,1\}$ and $L = K(\alpha)$, where α is a root of $1 + x + x^2 \in K[x]$. Prove that $\varphi : L \to L$ given by $a + b\alpha \mapsto a + b + b\alpha$ is an element of Aut(L/K), where $a, b \in K$.

Problem 6. Prove that the set \mathbb{A} of complex numbers that are algebraic over \mathbb{Q} form a subfield of \mathbb{C} that is algebraically closed. This gives an example of an algebraic field extension which is not finite.

Problem 7. Let L/K be a field extension such that one can pick $x \neq y \in L$ transcendental over K. Prove that x is algebraic over K(y) if and only if y is algebraic over K(x).