
Algebra V - Galois Theory

Mock Exam

Fall 2024

Problem 1. Indicate whether the statements that follow are true or false. You must justify
your answers by providing a short explanation and/or a counterexample.

(i) If α ∈ R is a root of some irreducible polynomial of degree four (over Q), then α is
constructible.

This is false. If L denotes the Galois closure of Q(α)/Q and α is constructible, then the
order of Gal(L/Q) must be a power of two. But we can certainly have Gal(L/Q) ≃ A4 or
S4, for example. Can you give a concrete example?

(ii) If K ⊂ F ⊂ L are fields such that L/F and F/K are algebraic, then L/K is algebraic.

This is true. Pick α ∈ L. Since α is algebraic over F we can consider f(x) = min(α, F ) =
anx

n+ . . .+a1x+a0. Now, since the coefficients ai ∈ F are algebraic over K, considering
fi(x) = min(ai, K), we have that

[K(α) : K] ≤ [K(α, a0, . . . , an) : K] ≤ degf · deg(fn) · . . . · deg(f0).

(iii) If K(α)/K is a finite field extension of odd degree, then K(α) = K(α2).

This is true. First, note that K ⊂ K(α2) ⊂ K(α) and that α is root of x2−α2 ∈ K(α2)[x].
Thus, [K(α) : K(α2)] ≤ 2 and since [K(α) : K(α2)] must divide [K(α) : K] and the latter
is an odd number, the equality follows.

(iv) If L/K is a finite field extension such that char(K) does not divide [L : K], then every
element of L is separable over K.

This is true. We can show that a nonzero polynomial in K[X] is separable if and only
if it is relatively prime to its derivative in K[X]. In particular, for every field K, an
irreducible polynomial in K[X] is separable if and only if its derivative is not 0 in K[X].
This means that when K has characteristic 0, every irreducible in K[X] is separable and
when K has characteristic p > 0, an irreducible in K[X] is separable if and only if it is
not a polynomial in xp.

Now, in our situation, we apply this to the minimal polynomial over K of an element
α ∈ L. Suppose that there exists some α with a minimal polynomial that is not separable.
In that case, we can only be in characteristic p, and such polynomial must have a degree
divisible by p, which divides [L : K], contradicting our assumption.
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(v) There exist degree-two field extensions that are not normal.

This is false. Every degree-two extension is normal. Let L/K be a degree-two extension.
Pick α ∈ L. Since α is algebraic, we can consider min(α,K) which has degree d ≤ 2. If
d = 1, then this polynomial trivially splits (in K[x] ⊂ L[x]). If d = 2, then let β ∈ K̄ be
the second root and write min(α,K) = x2+ax+b = (x−α)(x−β). Then β = −a−α ∈ L,
and min(α,K) splits in L[x].

Problem 2. Give an example of each of the following.

(i) A field extension L/K that is not solvable.

It suffices to consider K = Q and L = SFQ(f), where f is the polynomial xn−x+1, with
n ≥ 5. We have that Gal(L/K) = Sn, which is not solvable. Hence, the extension is not
solvable (by the Abel criterion).

(ii) Fields K ⊂ F ⊂ L such that the extensions L/F and F/K are normal and L/K is not.

One can take Q ⊂ Q(
√
2) ⊂ Q(

4
√
2).

(iii) An irreducible polynomial f ∈ Q[x] such that Gal(SFQ(f)/Q) ≃ (Z/2Z)2.

It suffices to take α, β ∈ Q such that α, β and αβ are not squares in Q. Then, cf. problem
6, the splitting field of x4 − 2(α + β)x2 + (α − β)2 is Q(

√
α,

√
β) = Q(

√
α +

√
β). The

automorphisms are determined by
√
α → ±

√
α and

√
β → ±

√
β.

*In the actual exam, you must justify your answers.

Problem 3.

(i) Describe the splitting field SFQ(f) of the polynomial f(x) = x4 − 2 ∈ Q[x] and compute
the corresponding Galois group Gal(SFQ(f)/Q).

You should argue that SFQ(f) = Q(
4
√
2, i) and Gal(SFQ(f)/Q) ≃ D4 (dihedral group with

8 elements).

(ii) Give an example of a cubic polynomial in Q[x] such that Gal(SFQ(f)/Q) ≃ A3.

Any polynomial of the form x3 − αx + α, where α = k2 + k + 7 for some k ∈ Z (Lecture
11).

(iii) Determine the splitting field of the polynomial x4 + 1 over F3.

Over F3 we have that
x4 + 1 = (x2 + x+ 2)(x2 − x+ 2).

Now, irreducible polynomials of the same degree have the same splitting field over finite
fields. So, the above tells us that the splitting field of x4 + 1 is isomorphic to the splitting
field of x2 + x+ 2, which is ≃ F32.

*In the actual exam, you must justify your answers.
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Problem 4. Let p be a prime number in Z and let L = SFQ(f) be the splitting field over Q of
the polynomial f(X) = xn − p ∈ Q[x], where n ≥ 3. Prove that the group Gal(L/Q) is never
abelian, independent of n.

Note that L = Q( n
√
p, ζn n

√
p, . . . , ζn−1

n
n
√
p), where ζn is a primitive nth root of unity. More-

over, because n ≥ 3, we have that Q( n
√
p) ̸= L and the extension Q( n

√
p)/Q is not normal.

Thus, Gal(L/Q) cannot be Abelian. Otherwise, any subgroup would be normal; hence, any
intermediate field would be normal (over Q).

Problem 5. Let p ≥ 3 be a prime number, ζp a (primitive) pth root of unity, and L = Q(ζp).

(i) Prove that L/Q is Galois and determine the corresponding Galois group.

We have that L = SFQ(x
p − 1), hence L is normal. The extension is separable since we

are in characteristic zero. Now, Gal(L/Q) ≃ (Z/pZ)×. So, the extension is cyclic.

(ii) Prove that NL/Q(ζp) = 1 and deduce that for each generator σ of Gal(L/Q), there exists

a ∈ L such that ζp =
a

σ(a)
.

The set {1, ζp, ζ2p , . . . , ζp−2
p } gives a basis for L. Multiplication by ζp defines a linear map

L → L whose matrix representation in this basis is

0 0 0 · · · 0 −1
1 0 0 · · · 0 −1
0 1 0 · · · 0 −1
0 0 1 · · · 0 −1
...

...
...

. . .
...

...
0 0 0 · · · 1 −1


We have seen (Worksheet 3) that NL/Q(ζp) is simply the determinant of this linear map.
We can simply use Laplace expansion along the first row to see that the determinant equals
one (= (−1)p−1). The conclusion then follows from Hilbert’s 90.

Problem 6. Let L/K be a field extension of degree four, and assume that char(K) ̸= 2. Prove
that L contains an intermediate subfield F with [L : F ] = 2 if and only if L = K(γ), where γ is
a root of an irreducible polynomial of the form x4 + ax2 + b ∈ K[x].

⇒ If ∃ K ⊂ F ⊂ L such that [L : F ] = 2, then we can find α ∈ K and β ∈ F such that

L = F (
√

β) and F = K(
√
α). Thus, L = K(

√
α,

√
β). Now, [K(

√
β) : K] = 2 or 4. In

the first case, we may assume that β ∈ K and then L = K(γ) for γ =
√
α +

√
β a root of

x4 − 2(α+ β)x2 + (α− β)2. In the second case, we must have that β = c+ d
√
α and L = K(γ)

for γ =
√

β a root of x4 − 2cx2 + c2 − d2α.

⇐ Note that γ is of the form ±

√
−a±

√
a2 − 4b

2
. Since L/K has degree four, the polynomial

must be irreducible, and a2 − 4b cannot be a square in K. And since
√
a2 − 4b ∈ L, we have

that F = K(
√
a2 − 4b) is an intermediate field with [L : F ] = 2.
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