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Exercise 1. Let V be a complex vector space of dimension k and consider V ⊗n. Then V ⊗n is a representation of the
symmetric group defined as

φ(σ) (u1 ⊗ u2 ⊗ . . .⊗ un) = uσ(1) ⊗ uσ(2) . . .⊗ uσ(n).

By Maschke’s theorem, V ⊗n decomposes as a direct sum of Sn- irreducible representations. The following exercise
identifies the subspaces of V ⊗n that carry the trivial (resp. sign) isotypical component with respect to the Sn action.

(a) Define P+ : V ⊗n → V ⊗n by

P+(u1 ⊗ u2 ⊗ . . .⊗ un) =
1

n!

∑
σ∈Sn

uσ(1) ⊗ uσ(2) . . .⊗ uσ(n).

Show that P+(V ⊗n) ⊂ T+, where T+ is the trivial isotypical component in V ⊗n with respect to the action of Sn
(the largest submodule of V ⊗n isomorphic to a direct sum of trivial representations of Sn).

(b) Define P− : V ⊗n → V ⊗n by

P−(u1 ⊗ u2 ⊗ . . .⊗ un) =
1

n!

∑
σ∈Sn

ε(σ)uσ(1) ⊗ uσ(2) . . .⊗ uσ(n),

where ε(σ) is the sign of the permutation σ. Show that P−(V ⊗n) ⊂ T−, where T− is the isotypical component of
the sign representation in V ⊗n (the largest submodule of V ⊗n isomorphic to a direct sum of sign representations
of Sn).

(c) Show that P+|T+
= idT+

, P−|T− = idT− and deduce that P+, P− are projectors onto T+, T−.

(d) Show that T+ ∼= Sn(V ) and T− ∼= ∧n(V ).

Solution 1. We can view the tensor product V ⊗n as a C[Sn]-representation, where τ ∈ Sn acts via τ · u = φ(τ)(u)
for u ∈ V ⊗n.

(a) For u ∈ V ⊗n and τ ∈ Sn, we have

τ · P+(u) = τ ·
( 1

n!
·
∑
σ∈Sn

σ · u
)

=
1

n!
·
∑
σ∈Sn

τσ · u =
1

n!
·
∑
σ∈Sn

σ · u = P+(u)

because the map σ 7→ τσ is a bijection on Sn. It follows that P+(u) belongs to the isotypical component of the
trivial C[Sn]-representation of V ⊗n, so P+(u) ⊆ spanC{P+(u)} ⊆ T+, as required.

(b) As in part (a), we compute that

τ · P−(u) =
1

n!
·
∑
σ∈Sn

ε(σ) · τσ · u = ε(τ) · 1

n!
·
∑
σ∈Sn

ε(τσ) · τσ · u = ε(τ) · 1

n!
·
∑
σ∈Sn

ε(σ) · σ · u = ε(τ) · P−(u),

using in the second step that ε is a group homomorphism and in the third step that σ 7→ τσ is a bijection.
Again, we conclude that P−(u) belongs to the isotypical component of the sign representation of C[Sn] in V ⊗n,
so P−(u) ∈ T− as required.

(c) If u ∈ T+ then σ · u = u for all σ ∈ Sn and therefore

P+(u) =
1

n!
·
∑
σ∈Sn

σ · u =
1

n!
·
∑
σ∈Sn

u =
1

n!
· n! · u = u



as Sn has order n!. Analogously, we have σ · u = ε(σ) · u for all σ ∈ Sn and u ∈ T− and therefore

P−(u) =
1

n!
·
∑
σ∈Sn

ε(σ) · σ · u =
1

n!
·
∑
σ∈Sn

ε(σ)2 · u = u

as Sn has order n! and ε(σ) ∈ {±1} for all σ ∈ Sn. It follows that P+|T+
= idT+

and P−|T− = idT− . As the
image of P+ is contained in T+ and the image of P− is contained in T−, we further conclude that P 2

+ = P+ and
P 2
− = P−, so P+ and P− are projections onto T+ and T−, respectively.

(d) Recall that SnV is the quotient of V ⊗n by the subspace U = spanC{u − σ · u | u ∈ V ⊗n, σ ∈ Sn} and write
π : V ⊗n → SnV for the canonical quotient homomorphism. For u ∈ V ⊗n and σ ∈ Sn, we have

P+(u− σ · u) = P+(u)− P+(σ(u)) = P+(u)− P+(u) = 0

by a computation similar to part (a). It follows that U ⊆ ker(P+), so P+ induces a homomorphism P̄+ : SnV → T+
with P+ = P̄+ ◦ π. Then

P̄+ ◦ (π|T+) =
(
P̄+ ◦ π

)∣∣
T+

= P+|T+ = idT+

by part (c). Furthermore, we have π ◦ P+ = π because π(σ · u) = π(u) for all σ ∈ Sn and u ∈ V ⊗n and it follows
that

(π|T+
) ◦ P̄+ ◦ π = π ◦ P+ = π.

As π is surjective, this implies that (π|T+) ◦ P̄+ = idSnV , so P̄+ is an isomorphism with inverse π|T+
.

Analogously,
∧n

V is the quotient of V ⊗n by the subspace

U ′ = spanC{u | u ∈ V ⊗n such that u = s · u for some transposition s ∈ Sn}

and we write π′ : V ⊗n →
∧n

V for the canonical quotient homomorphism. For u ∈ V ⊗n such that u = s · u for
some transposition s ∈ Sn then

P−(u) = P−(s · u) = ε(s) · P−(u) = −P−(u)

and it follows that P−(u) = 0, so U ′ ⊆ ker(P−). As before, we obtain a homomorphism P̄− :
∧n

V → T− with
P− = P̄− ◦ π′ and using part (c), we see that

P̄− ◦ (π′|T−) =
(
P̄− ◦ π

)∣∣
T−

= P−|T− = idT− .

Now we have π′(σ · u) = ε(σ) · π′(v) for all σ ∈ Sn and u ∈ V ⊗n and therefore π′ ◦ P− = π′. As before, it follows
that

(π′|T−) ◦ P̄− ◦ π′ = π′ ◦ P− = π′

and surjectivity of π′ implies that (π′|T−) ◦ P̄− = id∧n V . Hence P̄− is an isomorphism with inverse π′|T− .

Exercise 2. (Hilbert’s third problem)
This exercise shows how tensor products can be used to solve a problem in 3-dimensional geometry.

(a) Define the Dehn invariant D(A) ∈ R⊗Q R/Q of a polyhedron A by

D(A) =
∑
a

l(a)⊗ β(a)

π
,

where the sum is taken over the edges of A, l(a) is the length of a, and β(a) is the angle at the edge a. Show that
if you cut A into B and C by a straight cut, then D(A) = D(B) +D(C).

(b) Find the angle α at the edge of a regular tetrahedron and prove that it is not a rational multiple of π.
Hint: Assume that α = m

n π and deduce that (x + x−1) = 2
3 , where x is a root of unity of degree n. Show by

induction that xk + x−k has denominator 3k and deduce a contradiction.

(c) Compute the Dehn invariants of a cube and of a regular tetrahedron and conclude that a cube cannot be cut with
straight cuts and rebuilt in the shape of a regular tetrahedron of the same volume.



Solution 2. (a) We first have to see in how many different ways a straight cut can change the Dehn invariant. For
an edge a of A, the pair (l(a), β(a)) changes after the cut either if l(a) changed (the cut cuts an edge transversely,
dividing the edge in two) or if β(a) changed (the cut cuts along the edge, dividing the angle in two). On the other
hand, new edges (l(a), β(a)) are created every time the cut divides a face in two, so there are in total three cases
to consider.

(i) If an edge (l, β) is cut transversely, it is divided in two pairs (l1, β) and (l2, β) with l1 + l2 = l. Then
l ⊗ β/π = l1 ⊗ β/π + l2 ⊗ β/π, leaving the invariant unchanged.

(ii) If an edge (l, β) is cut longitudinally, it is divided in two pairs (l, β1) and (l, β2) with β1 + β2 = β. Then
l ⊗ β/π = l ⊗ β1/π + l ⊗ β2/π, leaving the invariant unchanged.

(iii) If the cut divides a face in two, it will create two pairs with supplementary angles (l, β) and (l, π − β) but
together they will not change the invariant: l ⊗ β/π + l ⊗ (π − β)/π = l ⊗ 1 = 0, as 1 ∈ Q.

(b) We first claim that the angle is β = arccos(1/3). Indeed, let ABCD be a regular tetrahedron, G the center of
ABC, and M the midpoint of AC.

As G is the barycenter of ABC, we have MG = MB/3, so that cos(β) = MG/MD = 1/3 ·MB/MD = 1/3.

Now assume that arccos(1/3)/π = m
n is a rational number. Then,

1

3
= cos

(mπ
n

)
=

1

2

(
ei
mπ
n + e−i

mπ
n

)
=

1

2
(x+ x−1),

where x = ei
mπ
n is a roots of unity of order 2n. We now claim that for k ≥ 0, xk + x−k is a rational number with

denominator 3k. We prove it by induction on k, as the case k = 0 is clear and the case k = 1 is already covered
above. Assume that xi + x−i has denominator 3i for 1 ≤ i < k. Then,

xk+1 + x−(k+1) = (x+ x−1)(xk + x−k)− (xk−1 + x−k+1) =
2

3
(xk + x−k)− (xk−1 + x−(k−1)),

proves the induction step, inspecting the denominator of the right hand side. On the other hand, since x2n = 1,
we have x2n + x−2n = 2, a contradiction. Thus, β = arccos(1/3) is not a rational multiple of π.

(c) Since the dihedral angle at an edge of a cube is π/2, we have for a cube β(a)/π = 1
2 ≡ 0 mod Q, and therefore

D(C) = 0. On the other hand, for a tetrahedron we have D(T ) = 6l ⊗ arccos(1/3)/π 6= 0. Since D(C) 6= D(T ),
one of them cannot be cut and reconstructed to obtain the other.


