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Exercise 1. (a) Let G be a finite group, and V1 and Vk two complex representations, dimV1 = 1, dimVk = k. Use
characters to show that Vk ⊗ V1 is irreducible if and only if Vk is.

(b) Let V be an irreducible complex representation of G of dimension k > 1, and suppose that it is the only irreducible
representation of G of dimension k. Show that if there is a 1-dimensional complex representation ρ1 of G and an
element g ∈ G such that ρ1(g) 6= 1, then χV (g) = 0. This property is useful in computation of character tables.

Solution 1. (a) Let χk be the character of Vk, and χ1 - the character of V1. Then χkχ1 is the character of Vk ⊗ V1.
Let us compute the inner product

(χkχ1, χkχ1) =
1

|G|
∑
g

χk(g)χ1(g)χk(g)χ1(g).

Since V1 is one-dimensional, χ1(g) = ρ1(g) and is a root of unity. Therefore, χ1(g)χ1(g) = |χ1(g)|2 = 1 for all
g ∈ G. Then we have

(χkχ1, χkχ1) =
1

|G|
∑
g

χk(g)χk(g) = (χk, χk).

Therefore, (χkχ1, χkχ1) = 1 if and only if (χk, χk) = 1. Equivalently, Vk ⊗ V1 is irreducible if and only if Vk is.

(b) By (a) we know that V ⊗V1 is irreducible, and since V is the only irreducible representation of the given dimension,
we should have V ⊗ V1 ' V , and χV (g)χ1(g) = χV (g) for all g ∈ G. If χ1(g) 6= 1 for some g ∈ G, this implies
χV (g) = 0.

Exercise 2. This exercise shows how to compute the symmetric and exterior powers of linear maps given by explicit
matrices.

(a) Let V be a 2-dimensional vector space. Let f : V → V be given by the matrix

f =

(
p q
r s

)
.

Find the matrix of S2(f) : S2(V )→ S2(V ), where S2(V ) is the second symmetric power of V .

(b) Let U be a 3-dimensional vector space. Let g : U → U be given the matrix

g =

 r s t
u v w
x y z

 .

Find the matrix of ∧2(g) : ∧2(V )→ ∧2(V ), where ∧2(V ) is the second exterior power of V .

Solution 2. (a) Choose a basis {a, b} of V such that f(a) = pa+rb and f(b) = qa+sb. Then {aa, ab, bb} understood
as commuting variables form a basis of S2V and we have

S2f(aa) = f(a)f(a) = (pa+ rb)(pa+ rb) = p2 · aa+ 2pr · ab+ r2 · bb
S2f(ab) = f(a)f(b) = (pa+ rb)(qa+ sb) = pq · aa+ (ps+ rq) · ab+ rs · bb
S2f(bb) = f(b)f(b) = (qa+ sb)(qa+ sb) = q2 · aa+ 2qs · ab+ s2 · bb.

It follows that the matrix of S2f is  p2 pq q2

2pr ps+ rq 2qs
r2 rs s2

 .



(b) Choose a basis {a, b, c} of V such that

g(a) = ra+ ub+ xc,

g(b) = sa+ vb+ yc,

g(c) = ta+ wb+ zc.

Then {a ∧ b, a ∧ c, b ∧ c} is a basis of
∧2

V and we have∧2
g(a ∧ b) = g(a) ∧ g(b) = (ra+ ub+ xc)(sa+ vb+ yc)

= (rv − us) · a ∧ b+ (ry − xs) · a ∧ c+ (uy − xv) · b ∧ c,∧2
g(a ∧ c) = g(a) ∧ g(c) = (ra+ ub+ xc)(ta+ wb+ zc)

= (rw − ut) · a ∧ b+ (rz − xt) · a ∧ c+ (uz − xw) · b ∧ c,∧2
g(b ∧ c) = g(b) ∧ g(c) = (sa+ vb+ yc)(ta+ wb+ zc)

= (sw − vt) · a ∧ b+ (sz − yt) · a ∧ c+ (vz − yw) · b ∧ c.

It follows that the matrix of
∧2

g is rv − us rw − ut sw − vt
ry − xs rz − xt sz − yt
uy − xv uz − xw vz − yw

 .

Exercise 3. Let V ' Cn and A : V → V be a linear map with eigenvalues {λi}ni=1. Consider the linear maps
S2(A) : S2(V )→ S2(V ) and ∧2A : ∧2V → ∧2V . This exercise expresses the trace of a symmetric and exterior square
of a linear map in terms of traces in V .

(a) Express the trace tr(S2(A)) in terms of tr(A) and tr(A2).

(b) Express the trace tr(∧2(A)) in terms of tr(A) and tr(A2).

(c) Let V be a representation of a finite group G, dim(V ) ≥ 2 and let g ∈ G. Use (a) and (b) to express the characters
of the representations S2V and ∧2V in terms of χV (g) and χV (g2).

Solution 3. Let {v1, . . . , vn} be a basis of V such that vi is a generalized eigenvector associated to λi for all i = 1, . . . , n
and A is in Jordan normal form with respect to this basis, i.e. Avi = λivi + µivi−1 with µi ∈ {0, 1}.

(a) The vectors {vivj | 1 ≤ i ≤ j ≤ n} form a basis of S2V and we have S2A(vivj) = (Avi)(Avj) = λiλj · vivj +µiλj ·
vi−1vj + λiµj · vivj−1 + µiµj · vi−1vj−1, so {λiλj | 1 ≤ i ≤ j ≤ n} is the (multi)set of eigenvalues of S2A. As the
trace of S2A is the sum of all eigenvalues of S2A, we obtain

tr(S2A) =
∑

1≤i≤j≤n

λiλj =
1

2
·
( ∑

1≤i≤n

∑
1≤j≤n

λiλj +
∑

1≤i≤n

λ2i

)
=

1

2
·
(
tr(A)2 + tr(A2)

)
,

where we also use the fact that the eigenvalues of A2 are {λ2i | i = 1, . . . , n}.

(b) The vectors {vi ∧ vj | 1 ≤ i < j ≤ n} form a basis of
∧2

V and we have
∧2

A(vi ∧ vj) = (Avi) ∧ (Avj) =
λiλj · vi ∧ vj + µiλj · vi−1 ∧ vj + λiµj · vi ∧ vj−1 + µiµj · vi−1 ∧ vj−1, so {λiλj | 1 ≤ i < j ≤ n} is the (multi)set of

eigenvalues of
∧2

A. As the trace of
∧2

A is the sum of all eigenvalues of
∧2

A, we obtain

tr(
∧2

A) =
∑

1≤i<j≤n

λiλj =
1

2
·
( ∑

1≤i≤n

∑
1≤j≤n

λiλj −
∑

1≤i≤n

λ2i

)
=

1

2
·
(
tr(A)2 − tr(A2)

)
,

as in part (a).

(c) From (a) and (b) we have

χS2V (g) =
1

2

(
(χV (g))2 + χV (g2)

)
,

χ∧2V (g) =
1

2

(
(χV (g))2 − χV (g2)

)
.

In particular, we have χV (g2) = χS2V (g)− χ∧2V (g).



Exercise 4. Let V be an n-dimensional complex vector space. Then GL(V ) acts in the space ∧m(V ) by g · (v1 ∧ v2 ∧
. . . ∧ vm) = gv1 ∧ gv2 ∧ . . . gvm, where m ≤ n, and on the space Sk(V ) by g · (u1u2 . . . uk) = (gu1)(gu2)...(guk).

(a) Show that ∧m(V ) is an irreducible representation of GL(V ), m ≤ n. Hint: Let {vi}ni=1 be a basis in V . Find
an element H ∈ GL(V ) such that ∧mH is a diagonal operator with all distinct eigenvalues in ∧m(V ). Then any
subrepresentation W ⊂ ∧m(V ) should contain a subset of eigenvectors of H. Use an element P ∈ GL(V ) that
permutes the basis {vi} of V to conclude that W = ∧m(V ).

(b) Show that S2(V ) is an irreducible representation of GL(V ).

Solution 4. (a) Let H be the diagonal matrix in the basis {vi}ni=1 with the diagonal elements given by distinct prime
numbers p1, . . . pn. A basis in ∧m(V ) is given by the set {vi1 ∧ . . . ∧ vim} where 1 ≤ i1 < i2 < . . . < im ≤ n. The
operator ∧mH is diagonal in this basis with the eigenvalues given by the products of m distinct primes:

∧mH(vi1 ∧ . . . ∧ vim) = (pi1pi2 . . . pim)vi1 ∧ . . . ∧ vim .

Since pi are all distinct primes, these eigenvalues are all distinct. Suppose W ⊂ ∧m(V ) is a subrepresentation of
the group GL(V ). Then HW ⊂W , which means that W is spanned by a subset of the eigenvectors of H. Suppose
that vi1 ∧vi2 ∧ . . .∧vim ∈W , and consider another element of the basis of ∧m(V ), say vj1 ∧vj2 ∧ . . .∧vjm . Let σm
be the permutation that sends vik → vjk for all k = 1, . . .m ≤ n. Extend it in an arbitrary way to a permutation
σ ∈ Sn. Viewed as a permutation of the basis {vi}ni=1 in V , σ is a linear operator given by an invertible matrix
Pσ ∈ GL(V ). Since W is invariant under P ∈ GL(V ), we have

P (vi1 ∧ vi2 ∧ . . . ∧ vim) = vj1 ∧ vj2 ∧ . . . ∧ vjm ∈W.

Therefore, all elements of the basis of ∧m(V ) are in W , and thus ∧m(V ) is an irreducible representation of GL(V ).

(b) A basis in S2(V ) is given by the elements vi1vi2 , where 1 ≤ i1 ≤ i2 ≤ n. Similarly to (a) we have the operator H
acting diagonally on this basis with all distinct eigenvalues:

S2H(vi1vi2) = (pi1pi2)vi1vi2 .

Now the prime numbers in the product can repeat, but the product is still unique to each basis element. Suppose
that W ⊂ S2(V ) is a subrepresentation of GL(V ). Then it is spanned by a subset of the eigenvectors of H.

Suppose first that W contains a vector vi1vi2 , where 1 ≤ i1 < i2 ≤ n. For any 1 ≤ j1 < j2 ≤ n consider the
permutation i1 → j1, i2 → j2, completed to a permutation σ ∈ Sn. Viewed as a permutation of the basis {vi}ni=1

in V , σ gives rise to a linear operator given by the invertible matrix Pσ ∈ GL(V ). Since W is GL(V )-invariant,
we get

Pσ(vi1vi2) = vj1vj2 ∈W

for any 1 ≤ j1 < j2 ≤ n. Now consider the operator M = Id + Ei1,i2 ∈ GL(V ), where Ei1,i2(vi1) = vi2 , and
Ei1,i2vj = 0 for j 6= i1. We have

M(vi1vi2) = (vi1 + vi2)vi2 = vi1vi2 + v2i2 ∈W.

As vi1vi2 ∈ W , we have that v2i2 ∈ W . Now applying a suitable permutation operator that sends vi2 → vk, we
get that v2k ∈ W for all 1 ≤ k ≤ n. Finally, we have that vj1vj2 ∈ W for all 1 ≤ j1 ≤ j2 ≤ n, which implies that
W = S2V and S2V is irreducible.

Consider now the case when W contains a vector of the form v2i with 1 ≤ i ≤ n. Applying a suitable permutation
operator from GL(V ), we obtain as before that v2j , for any 1 ≤ j ≤ n is also in W . Now let M = Id +Eij , where
Eij(vi) = vj and Eij(vk) = 0 for k 6= i. Then we have M ∈ GL(V ), and

M(v2i ) = (vi + vj)
2 = v2i + 2vivj + v2j ∈W.

Since we already know that all elements of the form v2j , 1 ≤ j ≤ n, are in W , we obtain that vivj ∈W as well, and

so finally all vi1vi2 ∈W , where 1 ≤ i1 ≤ i2 ≤ n. Therefore, in this case as well W = S2V and S2V is irreducible.

Remark: In fact the following more general statement holds: Sm(V ) is an irreducible representation of GL(V )
for any m. The proof of this fact uses a similar method but requires a more careful construction of operators in
GL(V ) in order to obtain all elements of the standard basis starting from one of them. The case of ∧m(V ) is
easier because every element of the basis of V can occur at most once as a factor in a basis element of ∧m(V ).


