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October 29, 2024
Problem Set 6 Solutions

Exercise 1. Consider the group algebra A = C[Ss] of the group of permutations of 3 elements.
(a) Show that A ~ C[D3], where D3 = {s,r:s? = 1,73 = 1,srs = r~'} is the dihedral group of order 6.
(b) Classify the one-dimensional irreducible representations of A up to equivalence.

(c) Classify the two-dimensional irreducible representations of A up to equivalence.

)
)
)
(d) Use the obtained classifications and the theorem on the structure of finite dimensional algebras to show that A is
a semisimple algebra (without use of Maschke’s theorem).

Solution 1. (a) It is easy to check that the linear map ¢ : A — K[Dj3] such that ¢(s1) = s, ¢(s2) = sr is an algebra
isomorphism.

b) In dimension 1 we have, p(s)? = 1, therefore p(s) = 1. Also, p(r)% =1, so p(r) is a third root of unity. However,
p p p p
p(srs) = p(r) = p(r)~1, therefore p(r) = 1. Then we have just two inequivalent representations: the trivial one

p11, and pia(s) = —1, p1a(r) = 1.

(¢) Because of the isomorphism with the dihedral group, we have a representation by symmetries of a regular triangle,
where r acts by rotation by 27 /3 and s by reflection with respect to an axis passing through the origin. It is clearly
irreducible, because no linear combination of standard basis vectors is stable under both transformations. Now,
by Density theorem, A surjects onto @;End(V;), where V; are the inequivalent irreducible representations. The
dimension of A is 6, and the dimension of @;End(V;) for the representations that we already found, is 1 + 1 + 4.
Therefore, this is the only two-dimensional irreducible representation of A up to equivalence.

(d) We have A/Rad(A) ~ &;End(V;). As dim(A) = dim(@;End(V;), the radical is zero, and A is semisimple.

Exercise 2. (a) Let V7 and V5 be two-dimensional complex vector spaces with bases {21, 22} and {y1, y2} respectively.
Let A : Vi — V4 be the linear map given in the basis {z1, 22} by the matrix

(2 4)

and B : Vo — V5 the linear map given in the basis {y1,y2} by the matrix

B= ( i > :
u v
The linear map A ® B is defined as follows: (A ® B)(v1 ® v2) = A(v1) ® B(va). Compute the matrix A® B in the

basis {21 ® Y1, 21 ® Y2, T2 @ Y1, T2 @ Y2 }.

(b) Apply the above to find the matrices of the representation p®p of the group Dy = (s,7 | 2 = 1,7* = 1,s7s = r~ 1),
where p is the unique irreducible 2-dimensional representation:

= (1 0 ) = ( 5 5)

Derive the decomposition of p ® p into a direct sum of irreducible components.



Solution 2. (a) We will write (¢, p)” for a vector with components ¢ and p in the given basis in V; or V5. We have
(A® B)(z1 ®@y1) = (A® B)((1,0)" @ (1,0)") = A(1,0)" @ B(1,0)" = (a,¢)" @ (s,u)” =
= (a1 + cx2) @ (sy1 + uy2) = as(x1 @ y1) + au(zy @ y2) + cs(x2 @ Y1) + cu(x2 @ y2) = (as, au, cs, cu)T.
This is the expression of (A ® B)(z1 ® y1) in the basis {z1 ® y1,21 ® y2, 22 @ y1,22 @ Y2 }. Similarly,
(A® B)(z1 ®1y2) = (A® B)((1,00T ® (0,1)T) = A(1,0)T @ B(0,1)T = (a,¢)T @ (t,v)" = (at, av, ct, cv)T.
(A® B)(z2®y1) = (A® B)((0,1)" ® (1,0)7) = A(0,1)" @ B(1,0)" = (b,d)” & (s,u)” = (bs, bu,ds, du)”.
(A® B)(z1 @) = (A® B)((0,1)T @ (0,1)T) = A(0,1)T @ B(0,1)T = (b,d)T @ (t,v)T = (bt, bv, dt, dv)".
So finally the matrix of A ® B in the basis {1 ® y1,21 ® Y2, 22 @ Y1, T2 ® Y2} is given by

as at bs bt
au av bu bv aB bB
A®B = cs ct ds dt _<CB dB)'

cu cv du dv
The same computation generalizes to higher dimensional vector spaces.

(b) Using the given matrices of the two-dimensional irreducible representation p : V- — V of D4 and (a), we easily

compute
0001 0 0 0 1
00 10 0 0 -1 0
®27 .\ ®2(,.\
PE=1 0 1000 PO=l0o 1 0 o
100 0 1 0 0 0

The characteristic equation for both matrices is A\* — 2A?2 + 1 = (A2 — 1)2 = 0. So the only eigenvalues of both
matrices are 1, which means that the two-dimensional irreducible representation where r acts by rotation by
7/2 does not occur in p®2. The matrices are easily diagonalizable and we obtain that V@V ~ Vo & Vi © Vo @ V.
Remark Of course this decomposition can be easily obtained by computing the character. Use the character table we
have computed in class for Da: x,(1) = 2, x,(r?) = —2, other values of p are zeros. Then x,e2(1) = x,e2(r?) = 4,
other values are 0. The character table gives the unique decomposition

Xp®2 = X0 + X1 + X2 + X3.

Exercise 3. Let A, B be finite dimensional algebras. Then A ® B is also an algebra, with the multiplication given
by (a1 ® b1)(as ® ba) = aras ® bybs.

(a) Show that Mat, (K) ® Mat,,(K) ~ Mat,, (K) as associative algebras.

(b) Let V and W be irreducible finite dimensional representations of A and B, respectively. Show that V ® W with
the action p(a ® b)(v ® w) = p(a)v ® p(b)w, is a finite dimensional irreducible representation of A ® B. Hint: To
show irreducibility, use the density theorem and (a).

Solution 3. (a) Direct computation. Let E7; denote a square n X n matrix with the only nonzero entry, equal to
1, at the position (4, j), and zeros everywhere else. Then ¢ : Mat,(K) @ Mat, (K) — Mat,m(K), ¢(E}; @ Eff) =
EM . Tespects matrix multiplication:

mi+l,mj+
d’(EZ ® EZZ) : ‘ZS(E?t ® E{ZZ) = E:Lnﬁ-l,mj-i-k ! TIn’LT+I)7mt+q =

= 0jsOkp By ime+q = 0550k (B @ Eig)) = (B ® Eii) - (Egy @ Epg))-
Extending by bilinearity to Mat, (K) ® Mat,,(K) and noticing that {£7;} form a basis in Mat, (K), completes the
proof.

(b) The map p(a®b)(v@w) = p(a)v® p(b)w indeed defines a representation of A® B: p((a1 ®b1)-(az®b2))(v@w) =
plaraz)v ® p(brba)w = play)p(az)v ® p(by)p(b2)w = p(ar ® by)p(az @ b2)(v @ w). SInce V and W are irreducible,
by density theorem, the algebra A surjects onto End(V) and the algebra B surjects onto End(W), so A ® B
surjects onto End(V) ® End(W). This space is isomorphic to End(V ® W) by (a). Thus, V ® W is an irreducible
representation of A ® B.
Remark: If p; in V and py in W are irreducible representations of the same algebra A, then p; ® po in V@ W,
then the surjection argument above fails and the tensor product representation p; ® po in V ® W does not have to be
irreducible.



Exercise 4. (a) Suppose H C G is a normal subgroup of a finite group, and p : G/H — Aut(V) is a representation of
G/H. Let ¢ : G — G/H be the natural surjective homomorphism. Check that p = p o ¢ defines a representation
of G in V. If p is irreducible, show that p is irreducible as well. Show that inequivalent representations of G/H
lift to inequivalent representations of G.

b) Let Qg denote the group of quaternions, Qg = {£1, +i,+5, +k} with the defining relations
g J g
i=jk=—kj, j=ki=—ik, k=1ij=—ji, —1=i%>=j2=Fk%

Find the center Z(Qs), and describe the structure of Qg/Z(Qs). Use (a) to lift the irreducible representations of
Qs/Z(Qs) to Qs.

(¢) Use the structure theorem of semisimple finite dimensional algebras to find the dimensions of the remaining
irreducible representations of (Jg. Use the orthogonality relations to determine their characters.

(d) Use characters to decompose the tensor products of the irreducible representations of Qs of dimension > 1 into a
direct sum.

Solution 4. (a) If W’ € V is a subrepresentation of p, then 5(g) = p(é¢(g))W’' C W' for all g € G. This implies that
p(G/HYW' C W', because ¢ : G — G/H is surjective. So if p is irreducible, than p is irreducible as well. Now
suppose that Ap1(g)A~1 = pa(g) for all g € G. This implies that Ap;(¢(t))A~1 = pa(t) for all t € G/H, because
¢ : G — G/H is surjective. Therefore, inequivalent representations of G/H lift to inequivalent representations of G.

(b) The center Z(Qg) consists of two elements, +1. The quotient Qg/Z(Qg) = {i,4,k : i* = j2 = k?> = 1,ij = k}. The
same group can be presented as Qgs/Z(Qg) = {1,1, j,ij : i> = j2 = 1,ij = ji} This is the group Zy x Zs, it is abelian,
and it has 4 inequivalent irreducible representations determined by 4 independent choices: p(i) = £1, p(j) = £1.
These representations lift to Qs: p(%i) = p(i), p(£J5) = p(j), p(E£k) = p(i)p(4).

(¢) Since |Qg| = 8, taking into account the representations constructed in (b), we have 8 =1+ 1+ 1+ 1 4 4, which
is the only way 8 breaks up into a sum of squares with 4 ones, and not all ones (otherwise the group would be
commutative). Otherwise, you can observe that there are 5 conjugacy classes: 1, —1, +i, £j, £k. Then we have
only one representation of dimension 2. Obviously x2(1) = 2 and x2(—1) = —2. The remaining values of y2 can
be determined from the orthogonality relations: they need to satisfy (x2,X:) = %Egng x2(9)xi(g) = 0 for any
Xi = X11,X12, X13, X14. We have the following table to characters, where |Cy| denotes the number of elements in
the conjugacy class.

1| =1 i | 5| £k
|Cyl [1] 1 2 2 2
x11 | 1] 1 1 1 1
xi2 | 1] 1 | -1 1 | -1
X13 1 1 1 —-1] -1
x4 |1 1 | —=1|-1]1
X2 |2—-21] 0 0 0

In fact, the 2-dimensional representation can be realized by the Pauli matrices as follows,

p2(1)=<(1) (1)) 02(2'):(3 _OZ>
mi)=( % o) o= )

(d) The character of ps ® p2 is x = x3 = (4,4,0,0,0). Taking the inner products, we get
(i x3) =1/8(4+4)=1,  i=1234

(x2:x3) = 1/8(8 = 8) = 0.
Therefore, ps ® p2 >~ p11 ® p12 D p13 P P14-



