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Exercise 1. Consider the group algebra A = C[S3] of the group of permutations of 3 elements.

(a) Show that A ' C[D3], where D3 = {s, r : s2 = 1, r3 = 1, srs = r−1} is the dihedral group of order 6.

(b) Classify the one-dimensional irreducible representations of A up to equivalence.

(c) Classify the two-dimensional irreducible representations of A up to equivalence.

(d) Use the obtained classifications and the theorem on the structure of finite dimensional algebras to show that A is
a semisimple algebra (without use of Maschke’s theorem).

Solution 1. (a) It is easy to check that the linear map φ : A→ K[D3] such that φ(s1) = s, φ(s2) = sr is an algebra
isomorphism.

(b) In dimension 1 we have, ρ(s)2 = 1, therefore ρ(s) = ±1. Also, ρ(r)3 = 1, so ρ(r) is a third root of unity. However,
ρ(srs) = ρ(r) = ρ(r)−1, therefore ρ(r) = 1. Then we have just two inequivalent representations: the trivial one
ρ11, and ρ12(s) = −1, ρ12(r) = 1.

(c) Because of the isomorphism with the dihedral group, we have a representation by symmetries of a regular triangle,
where r acts by rotation by 2π/3 and s by reflection with respect to an axis passing through the origin. It is clearly
irreducible, because no linear combination of standard basis vectors is stable under both transformations. Now,
by Density theorem, A surjects onto ⊕iEnd(Vi), where Vi are the inequivalent irreducible representations. The
dimension of A is 6, and the dimension of ⊕iEnd(Vi) for the representations that we already found, is 1 + 1 + 4.
Therefore, this is the only two-dimensional irreducible representation of A up to equivalence.

(d) We have A/Rad(A) ' ⊕iEnd(Vi). As dim(A) = dim(⊕iEnd(Vi), the radical is zero, and A is semisimple.

Exercise 2. (a) Let V1 and V2 be two-dimensional complex vector spaces with bases {x1, x2} and {y1, y2} respectively.
Let A : V1 → V1 be the linear map given in the basis {x1, x2} by the matrix

A =

(
a b
c d

)
and B : V2 → V2 the linear map given in the basis {y1, y2} by the matrix

B =

(
s t
u v

)
.

The linear map A⊗B is defined as follows: (A⊗B)(v1⊗ v2) = A(v1)⊗B(v2). Compute the matrix A⊗B in the
basis {x1 ⊗ y1, x1 ⊗ y2, x2 ⊗ y1, x2 ⊗ y2}.

(b) Apply the above to find the matrices of the representation ρ⊗ρ of the group D4 = 〈s, r | s2 = 1, r4 = 1, srs = r−1〉,
where ρ is the unique irreducible 2-dimensional representation:

ρ(s) =

(
0 1
1 0

)
, ρ(r) =

(
0 1
−1 0

)
.

Derive the decomposition of ρ⊗ ρ into a direct sum of irreducible components.



Solution 2. (a) We will write (t, p)T for a vector with components t and p in the given basis in V1 or V2. We have

(A⊗B)(x1 ⊗ y1) = (A⊗B)((1, 0)T ⊗ (1, 0)T ) = A(1, 0)T ⊗B(1, 0)T = (a, c)T ⊗ (s, u)T =

= (ax1 + cx2)⊗ (sy1 + uy2) = as(x1 ⊗ y1) + au(x1 ⊗ y2) + cs(x2 ⊗ y1) + cu(x2 ⊗ y2) = (as, au, cs, cu)T .

This is the expression of (A⊗B)(x1 ⊗ y1) in the basis {x1 ⊗ y1, x1 ⊗ y2, x2 ⊗ y1, x2 ⊗ y2}. Similarly,

(A⊗B)(x1 ⊗ y2) = (A⊗B)((1, 0)T ⊗ (0, 1)T ) = A(1, 0)T ⊗B(0, 1)T = (a, c)T ⊗ (t, v)T = (at, av, ct, cv)T .

(A⊗B)(x2 ⊗ y1) = (A⊗B)((0, 1)T ⊗ (1, 0)T ) = A(0, 1)T ⊗B(1, 0)T = (b, d)T ⊗ (s, u)T = (bs, bu, ds, du)T .

(A⊗B)(x1 ⊗ y2) = (A⊗B)((0, 1)T ⊗ (0, 1)T ) = A(0, 1)T ⊗B(0, 1)T = (b, d)T ⊗ (t, v)T = (bt, bv, dt, dv)T .

So finally the matrix of A⊗B in the basis {x1 ⊗ y1, x1 ⊗ y2, x2 ⊗ y1, x2 ⊗ y2} is given by

A⊗B =


as at bs bt
au av bu bv
cs ct ds dt
cu cv du dv

 =

(
aB bB
cB dB

)
.

The same computation generalizes to higher dimensional vector spaces.

(b) Using the given matrices of the two-dimensional irreducible representation ρ : V → V of D4 and (a), we easily
compute

ρ⊗2(s) =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , ρ⊗2(r) =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 .

The characteristic equation for both matrices is λ4 − 2λ2 + 1 = (λ2 − 1)2 = 0. So the only eigenvalues of both
matrices are ±1, which means that the two-dimensional irreducible representation where r acts by rotation by
π/2 does not occur in ρ⊗2. The matrices are easily diagonalizable and we obtain that V ⊗ V ' V0⊕ V1⊕ V2⊕ V3.

Remark Of course this decomposition can be easily obtained by computing the character. Use the character table we
have computed in class for D4: χρ(1) = 2, χρ(r

2) = −2, other values of ρ are zeros. Then χρ⊗2(1) = χρ⊗2(r2) = 4,
other values are 0. The character table gives the unique decomposition

χρ⊗2 = χ0 + χ1 + χ2 + χ3.

Exercise 3. Let A, B be finite dimensional algebras. Then A ⊗ B is also an algebra, with the multiplication given
by (a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2.

(a) Show that Matn(K)⊗Matm(K) ' Matnm(K) as associative algebras.

(b) Let V and W be irreducible finite dimensional representations of A and B, respectively. Show that V ⊗W with
the action ρ(a⊗ b)(v ⊗ w) = ρ(a)v ⊗ ρ(b)w, is a finite dimensional irreducible representation of A⊗B. Hint: To
show irreducibility, use the density theorem and (a).

Solution 3. (a) Direct computation. Let Enij denote a square n × n matrix with the only nonzero entry, equal to
1, at the position (i, j), and zeros everywhere else. Then φ : Matn(K) ⊗Matm(K) → Matnm(K), φ(Enij ⊗ Emlk ) =
Enmmi+l,mj+k respects matrix multiplication:

φ(Enij ⊗ Emlk ) · φ(Enst ⊗ Empq) = Enmmi+l,mj+k · Enmms+p,mt+q =

= δjsδkpE
nm
mi+l,mt+q = φ(δjsδkp(E

n
it ⊗ Emlq )) = φ((Enij ⊗ Emlk ) · (Enst ⊗ Empq)).

Extending by bilinearity to Matn(K)⊗Matm(K) and noticing that {Enij} form a basis in Matn(K), completes the
proof.

(b) The map ρ(a⊗ b)(v⊗w) = ρ(a)v⊗ρ(b)w indeed defines a representation of A⊗B: ρ((a1⊗ b1) · (a2⊗ b2))(v⊗w) =
ρ(a1a2)v ⊗ ρ(b1b2)w = ρ(a1)ρ(a2)v ⊗ ρ(b1)ρ(b2)w = ρ(a1 ⊗ b1)ρ(a2 ⊗ b2)(v ⊗ w). SInce V and W are irreducible,
by density theorem, the algebra A surjects onto End(V) and the algebra B surjects onto End(W), so A ⊗ B
surjects onto End(V)⊗ End(W). This space is isomorphic to End(V⊗W) by (a). Thus, V ⊗W is an irreducible
representation of A⊗B.
Remark: If ρ1 in V and ρ2 in W are irreducible representations of the same algebra A, then ρ1 ⊗ ρ2 in V ⊗W ,

then the surjection argument above fails and the tensor product representation ρ1 ⊗ ρ2 in V ⊗W does not have to be
irreducible.



Exercise 4. (a) Suppose H ⊂ G is a normal subgroup of a finite group, and ρ : G/H → Aut(V) is a representation of
G/H. Let φ : G→ G/H be the natural surjective homomorphism. Check that ρ̃ = ρ ◦ φ defines a representation
of G in V . If ρ is irreducible, show that ρ̃ is irreducible as well. Show that inequivalent representations of G/H
lift to inequivalent representations of G.

(b) Let Q8 denote the group of quaternions, Q8 = {±1,±i,±j,±k} with the defining relations

i = jk = −kj, j = ki = −ik, k = ij = −ji, −1 = i2 = j2 = k2.

Find the center Z(Q8), and describe the structure of Q8/Z(Q8). Use (a) to lift the irreducible representations of
Q8/Z(Q8) to Q8.

(c) Use the structure theorem of semisimple finite dimensional algebras to find the dimensions of the remaining
irreducible representations of Q8. Use the orthogonality relations to determine their characters.

(d) Use characters to decompose the tensor products of the irreducible representations of Q8 of dimension > 1 into a
direct sum.

Solution 4. (a) If W ′ ∈ V is a subrepresentation of ρ̃, then ρ̃(g) = ρ(φ(g))W ′ ⊂W ′ for all g ∈ G. This implies that
ρ(G/H)W ′ ⊂ W ′, because φ : G → G/H is surjective. So if ρ is irreducible, than ρ̃ is irreducible as well. Now
suppose that Aρ̃1(g)A−1 = ρ̃2(g) for all g ∈ G. This implies that Aρ1(φ(t))A−1 = ρ̃2(t) for all t ∈ G/H, because
φ : G→ G/H is surjective. Therefore, inequivalent representations ofG/H lift to inequivalent representations ofG.

(b) The center Z(Q8) consists of two elements, ±1. The quotient Q8/Z(Q8) = {i, j, k : i2 = j2 = k2 = 1, ij = k}. The
same group can be presented as Q8/Z(Q8) = {1, i, j, ij : i2 = j2 = 1, ij = ji} This is the group Z2×Z2, it is abelian,
and it has 4 inequivalent irreducible representations determined by 4 independent choices: ρ(i) = ±1, ρ(j) = ±1.
These representations lift to Q8: ρ̃(±i) = ρ(i), ρ̃(±j) = ρ(j), ρ̃(±k) = ρ(i)ρ(j).

(c) Since |Q8| = 8, taking into account the representations constructed in (b), we have 8 = 1 + 1 + 1 + 1 + 4, which
is the only way 8 breaks up into a sum of squares with 4 ones, and not all ones (otherwise the group would be
commutative). Otherwise, you can observe that there are 5 conjugacy classes: 1, −1, ±i, ±j, ±k. Then we have
only one representation of dimension 2. Obviously χ2(1) = 2 and χ2(−1) = −2. The remaining values of χ2 can
be determined from the orthogonality relations: they need to satisfy (χ2, χi) = 1

8

∑
g∈Q8

χ2(g)χi(g) = 0 for any
χi = χ11, χ12, χ13, χ14. We have the following table to characters, where |Cg| denotes the number of elements in
the conjugacy class.

1 −1 ±i ±j ±k
|Cg| 1 1 2 2 2
χ11 1 1 1 1 1
χ12 1 1 −1 1 −1
χ13 1 1 1 −1 −1
χ14 1 1 −1 −1 1
χ2 2 −2 0 0 0

In fact, the 2-dimensional representation can be realized by the Pauli matrices as follows,

ρ2(1) =

(
1 0
0 1

)
ρ2(i) =

(
i 0
0 −i

)

ρ2(j) =

(
0 1
−1 0

)
ρ2(k) =

(
0 i
i 0

)
(d) The character of ρ2 ⊗ ρ2 is χ = χ2

2 = (4, 4, 0, 0, 0). Taking the inner products, we get

(χ1i, χ
2
2) = 1/8(4 + 4) = 1, i = 1, 2, 3, 4

(χ2, χ
2
2) = 1/8(8− 8) = 0.

Therefore, ρ2 ⊗ ρ2 ' ρ11 ⊕ ρ12 ⊕ ρ13 ⊕ ρ14.


