October 15, 2024

Problem Set 5

Exercise 1. Consider the representation of the group $U(1) = \{e^{i\theta}, \theta \in [0, 2\pi[\}] \subset \mathbb{C} \text{ in } V = \mathbb{C}^2 \text{ given by the rotation matrix}\}$

 $\rho(e^{i\theta}) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$

Decompose V into a direct sum of two irreducible unitary complex representations of U(1).

Exercise 2. Let A be an associative algebra over a field k. For a representation V of A, consider the vector space $\operatorname{End}_A(V)$ of endomorphisms of the representation V (linear maps $V \to V$ commuting with the action of A in V). Let V be the left regular representation, V = A. Show that $\operatorname{End}_A(A)$ is an associative algebra isomorphic to A^{op} , the algebra A with the opposite multiplication.

Exercise 3. Let $A = \operatorname{Mat}_n(k)$ for a field k. Prove that the algebra A is semisimple, meaning that any finite dimensional representation of A over k is isomorphic to a direct sum of irreducible representations.

Hint: Consider the basis of matrices with a single nonzero matrix element $\{E_{ij}\}$ in A. Show that for a representation V of A, we have $V = \bigoplus_{i=1}^n E_{ii}V$ and that for $v \in E_{11}V$, the linear span of $\{E_{11}v, E_{21}v, \dots E_{n1}v\}$ is a subrepresentation of V isomorphic to k^n . Conclude by choosing a basis in $E_{11}V$.

Exercise 4. Let A be a finite dimensional algebra, and Rad(A) the set of all elements of A that act by 0 in all irreducible representations of A.

- (a) Show that Rad(A) is a two-sided ideal in A.
- (b) Let $I \subset A$ be a two-sided nilpotent ideal, meaning that there exist $n \in \mathbb{N}$ such that $x^n = 0$ for all $x \in I$. Show that $I \subset \operatorname{Rad}(A)$.

Exercise 5. Recall that the character of a finite dimensional representation V of an algebra A over a field k is defined as $\chi_V(a) = \text{Tr}_V \rho(a)$. Show that if V is a finite dimensional representation of A, and $W \subset V$ a subrepresentation, then the character $\chi_V = \chi_W + \chi_{V/W}$.

- **Exercise 6.** (a) Construct all possible representations of the cyclic group $C_2 = \langle t \mid t^3 = 1 \rangle$ in V, where V is a two-dimensional vector space over the field \mathbb{F}_2 . Decompose the obtained representations into a direct sum of irreducibles.
- (b) For the obtained irreducible representations, consider the intertwiners $\phi: V \to V$ that commute with the action of the group C_3 . Show how the Schur's lemma fails in the case of the field \mathbb{F}_2 , which is not algebraically closed.