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October 8, 2024
Problem Set 4 Solutions

Note: Let A be an associative algebra over k and V' a vector space over k. Below we will use the notions of a
representation of A in V and of a left A-module V in the same sense, meaning that a representation (V, p) gives to
the vector space V the structure of a left A-module, and conversely, a structure of a left A-module gives rise to a
representation of A in V| namely

pla)v=a-v Vae AveV.

Exercise 1. (a) Show that the only irreducible finite dimensional representation of the cyclic group C, with p a
prime over the field F, = Z/pZ is trivial.

(b) Let V be an irreducible representation of the cyclic group C,, = (¢t |[t" = 1) where n = p*m, ged(p,m) =1, s € N
over [F,. Show that an irreducible representation V' of C,, factors through C,, — C,, meaning that the operator
p(t) : V — V satisfies (p(t))™ = 1.

Solution 1. (a) Let V be an irreducible representation of C), = (¢ | t? = 1) over F,;:
pty=T:V = V.

Then TP —Id = (T —Id)? = 0 over F,. Therefore, (T' — Id) is an intertwining operator V' — V of an irreducible
representation that is not invertible. By Schur’s lemma (over any field) we conclude that T'—Id = 0, and T' = Id.
Since V is irreducible, this means that V is one-dimensional.

(b) Similarly, let V' be an irreducible representation of C,, = (¢ | t* = 1) over F,,. Then
TP —1d = (T™ — Id)*

over F),. Therefore, (I"™ —1Id) : V. — V is an intertwining operator of an irreducible representation that is not
invertible. By Schur’s lemma we deduce that 7™ = Idy . Therefore, the representation factors through the group
homomorphism C,, — C,,.

Exercise 2. Let (V,p) be a representation of an associative algebra A over C. A vector v € V is cyclic if p(A)v =V
(the vector v generates V as an A-module). A representation admitting a cyclic vector is called cyclic. Show that a
representation V' is cyclic if and only if it is isomorphic to the representation A/I, where A acts by left multiplication,
for a proper left ideal I C A.

Solution 2. First suppose that V admits a cyclic vector v and define I = {a € A | a-v = 0}. The linear map ¢: A = V
with ¢(a) = a - v is a homomorphism of A-modules (if we consider A as an A-module via left multiplication) with
kernel I. In particular, I is a left ideal in A and I C A since I -v = {0} # V = A-v. Now ¢ is surjective since v is
cyclic and we conclude that

AJT = A/ ker(p) = im(p) = V.

Now suppose that V' = A/I for some proper left-ideal I C A and denote by 7: A — A/I = V the canonical (surjective)
homomorphism that sends an element to its residue class modulo I. Then 7 (1) is a cyclic vector in V' as every element
of V' is of the form 7(a) = m(a- 1) = a- m(1) for some a € A.

Exercise 3. (a) Let
0 1
A= < 0 0 > GMatg((C).

Let L be the left ideal, R the right ideal and I the two-sided ideal in the algebra Mats(C) generated by A. Describe
all matrices in the ideals L, R, I.

(b) Classify the left ideals in the matrix algebra Mat,, (C).
(c) Classify the two-sided ideals in the matrix algebra Mat,, (C).

(d) Classify the two-sided ideals in the ring Mato(Z).



Solution 3. (a) Let us try to construct the left ideal L generated by A. We have by definition L = Span(M A), where

M € Mato(C). So we obtain

a b 01\ (0 a
c d 00/ \0 ¢
Linear combinations of such matrices will produce arbitrary matrices with the zero first column. Therefore, L

contains all matrices with zeros in the first column and arbitrary elements in the second column.

Similarly, the right ideal R contains all matrices with zeros in the second row and arbitrary elements in the first

(e n)-(s8)

For the two-sided ideal, by definition I = Span(M AN), where M, N € Mats(C). Then we have
0 0 0 1 0 0 0 1 0 0 1 0
(1 o)(o 0)_(0 1)_‘41’ (0 o)<1 0)‘(0 0)‘*42’
0 0 0 0 0 0
(o 1)(1 0)‘(1 0)_‘43'

Using C-linear combinations of the obtained matrices, we get ads + bA + cAs + dA; = (¢ Z), for all a,b,c,d € C,
therefore I = Maty(C). In fact, Mat2(C) contains only zero and itself as two-sided ideals.

Notice that in (a), the rows in the the matrices in the left ideal in Mat(C) span the same subspace in C?: this is
the subspace of vectors of the form (2) This holds in general, and follows from matrix multiplication: the product
of two matrices M A is a matrix whose rows are linear combinations of the rows of A, as shown here:

ail aiz2 - Qlp Ry a11R1 +appRo+ -+ ainRn
a1 a2 - Q2n Ry a1 R1 +aRy + -+ + ax Ry,
an1 an2 e Ann Rn aanl + anQRQ +--+ anan

If you have two matrices with rows in the same subspace of C", then their C-linear combination is also a matrix
with rows in the same subspace. Let L be a left ideal in Mat,,(C), and let us define V(L) to be the vector subspace
in C™ of first rows of matrices in the ideal L € Mat,,(C) (it is straightforward to check that it is indeed a vector
space). Then we have a well-defined map from the ideals in Mat,,(C) to subspaces in C". Conversely, let L(V') be
the ideal of matrices with rows in V' (again it is clear that it is a subspace and we checked that it is a left ideal
in the computation above). We claim that V(L(V)) =V and L(V (L)) = L. Firstly, V(L(V)) C V as every row
of an element of L(V') is an element of V, in particular the first row is. To get that V(L(V)) 2 V, note that for
any v € V, the matrix having only v in the first row is an element of L(V'), so that v € V/(L(V)). For the other
equality, observe that if M € L(V (L)), then every row R; of M is the first row of some L; in the ideal L. Recall
that E;; is the matrix that has zeros everywhere except for the position (i,j) where the entry is 1. Then, using
our computation above, we have that M = >"" | E;1L;, so that M € L and L(V(L)) C L. Finally, if M € L,
every row R; is the first row of Ey;M € L, proving that L(V(L)) 2 L and the claim.

Therefore, there is a 1-1 correspondence between the left ideals in Mat,,(C) and subspaces in C™. If we recall that
vector subspaces in C™ are in fact left submodules of C™ over C, and left ideals in an algebra are 1-1 with the
submodules of its left regular representation, then we have a 1-1 correspondence between left C-submodules of C"
and left submodules of the regular representation of Mat,, (C). The set of all complex subspaces of C™ of dimension
m is called the Grassmannian Gr,,(n). So we have that the set of all left ideals in Mat,,(C) is parametrized by
the elements of all Grassmannians Gr, (1)<, <,,-

In particular, if we consider the case C2, the only nontrivial (different from zero and the whole algebra) left ideals
in Mat,,(C) are in 1-1 correspondence with all 1-dimensional subspaces in C?, therefore with the elements of the
Grassmannian Gr(1,2), or the set of all lines in C2. This set is called the complez projective space P*.

Suppose that you have an ideal J that contains a matrix with a nonzero entry a;;. Multiplying by the matrix E;;
on the left kills all rows except the 7th row. Then multiplying by the matrix F;; on the right kills all columns
except for the j-th column. Now the resulting matrix has just one nonzero entry a;;, and dividing by a;; we obtain
that E;; € J. Moreover, for any 1 < k,I < n, multiplying by Ej; on the left and Ej; on the right, we obtain
EwEijE; = B € J, because every element of the canonical basis is sent to 0 except e; which is sent to ey.
Finally by considering linear combinations of these elementary matrices, we can obtain any matrix in Mat,, (C).
Therefore, if there is a matrix with at least one nonzero element in J, then J = Mat,,(C). Then the only two
ideals in Mat,,(C) are 0 and Mat,,(C). Recall from the course that such algebras are called simple.



(d) The set of two-sided ideals in Mat, (Z) is in 1-1 correspondence with N. Recall that the ideals in the ring Z
are principal, for each m € N there is an ideal (m) C Z of multiples of n. Let (m) C Z be an ideal and let
Jm = Mat, ((m)) be the set of all matrices with entries in (m). Clearly, J,, is an ideal in Mat,(Z). Conversely,
let J € Mat,,(Z) be a two-sided ideal, and let I(J) C Z be the set of all (1,1) entries of all matrices in J. Then
I(J) is an ideal in Z: if m,n € I(J) and r € Z, then we have matrices M, N € J with My, = m, N1; = n, so that
rm+mn=rMy + Ni; = (rM + N)1; € I(J). By our initial remark, we have I(J) = (m) for some m € N and we
now claim that J = J,,,. For any A € J, we have that a;; is the (1,1) entry of E1;AE;; € J, so that a;; € (m) and
A € Jp,. Conversely, to prove that J,, C J, we proceed in the same fashion as in (c). As m € (m), there is some
matrix A € J such that A;; = m. Then, not only Ey1AE;; = mEy; € J, but also Ej(mE)E; = mE;; € J.
Considering Z-linear combinations of these matrices, we finally have that J,,, C J, finishing the proof of the claim.

Thus there is a 1-1 correspondence between the two-sided ideals in the ring Mat,,(Z) and the ideals in Z, that are
parameterized by N.

Exercise 4. Use the isomorphism S 2 A/I for a maximal left ideal I C A to show that a simple module S over
A = Mat,, (C) is isomorphic to C™.

Solution 4. Set A := Mat,,(C) and let S be a simple A-module. Then S is cyclic and therefore S = A/I for some left
ideal I of A by Exercise 2 in PS 4. Note that I has to be a maximal left ideal as S is simple, otherwise there would
exist a left ideal J with I C J C A and J/I would be a proper non-zero submodule of A/I 2 S, a contradiction. Now
recall from Exercise 3 PS 4 that there is a bijection

{ subspaces of C" } L, { left ideals in A }

that sends a subspace W C C™ to the ideal L(W) of matrices with rows in W (this correspondence between left ideals
in Mat,,(C) and subspaces in C"™ is called the Morita equivalence). This bijection is inclusion-preserving, so maximal
ideals correspond to maximal subspaces and it follows that I = L(V') for some subspace V' C C" with dimV =n — 1.
Then C"/V is one-dimensional, so there exists a linear map ¥: C* — C with ker(d) = V. We define a linear map
p: A— C" by

1 9(r1)
) 19(7"2)
M = — i ,
Tn I(rn)
where 71,...,7, € C" are the rows of the matrix M. Using the definition of matrix multiplication, we see that ¢ is a

homomorphism of A-modules (see also the computation in the solution to part (b) of Exercise 3 PS 4). Furthermore,
 is surjective since 9 is surjective and ker(yp) = L(V) = T since ker(d) = V. Using the isomorphism theorem, we
conclude that

S=2 A/l =A/L(V)=A/ker(p) = im(p) = C",

as required.



