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Note: Let A be an associative algebra over k and V a vector space over k. Below we will use the notions of a
representation of A in V and of a left A-module V in the same sense, meaning that a representation (V, ρ) gives to
the vector space V the structure of a left A-module, and conversely, a structure of a left A-module gives rise to a
representation of A in V , namely

ρ(a)v = a · v ∀a ∈ A, v ∈ V.

Exercise 1. (a) Show that the only irreducible finite dimensional representation of the cyclic group Cp with p a
prime over the field Fp = Z/pZ is trivial.

(b) Let V be an irreducible representation of the cyclic group Cn = 〈t |tn = 1〉 where n = psm, gcd(p,m) = 1, s ∈ N
over Fp. Show that an irreducible representation V of Cn factors through Cn → Cm, meaning that the operator
ρ(t) : V → V satisfies (ρ(t))m = 1.

Solution 1. (a) Let V be an irreducible representation of Cp = 〈t | tp = 1〉 over Fp:

ρ(t) = T : V → V.

Then T p − Id = (T − Id)p = 0 over Fp. Therefore, (T − Id) is an intertwining operator V → V of an irreducible
representation that is not invertible. By Schur’s lemma (over any field) we conclude that T − Id = 0, and T = Id.
Since V is irreducible, this means that V is one-dimensional.

(b) Similarly, let V be an irreducible representation of Cn = 〈t | tn = 1〉 over Fp. Then

T psm − Id = (Tm − Id)p
s

over Fp. Therefore, (Tm − Id) : V → V is an intertwining operator of an irreducible representation that is not
invertible. By Schur’s lemma we deduce that Tm = IdV . Therefore, the representation factors through the group
homomorphism Cn → Cm.

Exercise 2. Let (V, ρ) be a representation of an associative algebra A over C. A vector v ∈ V is cyclic if ρ(A)v = V
(the vector v generates V as an A-module). A representation admitting a cyclic vector is called cyclic. Show that a
representation V is cyclic if and only if it is isomorphic to the representation A/I, where A acts by left multiplication,
for a proper left ideal I ⊂ A.

Solution 2. First suppose that V admits a cyclic vector v and define I = {a ∈ A | a·v = 0}. The linear map ϕ : A→ V
with ϕ(a) = a · v is a homomorphism of A-modules (if we consider A as an A-module via left multiplication) with
kernel I. In particular, I is a left ideal in A and I ( A since I · v = {0} 6= V = A · v. Now ϕ is surjective since v is
cyclic and we conclude that

A/I = A/ ker(ϕ) ∼= im(ϕ) = V.

Now suppose that V ∼= A/I for some proper left-ideal I ⊂ A and denote by π : A→ A/I ∼= V the canonical (surjective)
homomorphism that sends an element to its residue class modulo I. Then π(1) is a cyclic vector in V as every element
of V is of the form π(a) = π(a · 1) = a · π(1) for some a ∈ A.

Exercise 3. (a) Let

A =

(
0 1
0 0

)
∈ Mat2(C).

Let L be the left ideal, R the right ideal and I the two-sided ideal in the algebra Mat2(C) generated by A. Describe
all matrices in the ideals L,R, I.

(b) Classify the left ideals in the matrix algebra Matn(C).

(c) Classify the two-sided ideals in the matrix algebra Matn(C).

(d) Classify the two-sided ideals in the ring Mat2(Z).



Solution 3. (a) Let us try to construct the left ideal L generated by A. We have by definition L = Span(MA), where
M ∈ Mat2(C). So we obtain (

a b
c d

)(
0 1
0 0

)
=

(
0 a
0 c

)
Linear combinations of such matrices will produce arbitrary matrices with the zero first column. Therefore, L
contains all matrices with zeros in the first column and arbitrary elements in the second column.

Similarly, the right ideal R contains all matrices with zeros in the second row and arbitrary elements in the first
row. (

0 1
0 0

)(
a b
c d

)
=

(
c d
0 0

)
For the two-sided ideal, by definition I = Span(MAN), where M,N ∈ Mat2(C). Then we have(

0 0
1 0

)(
0 1
0 0

)
=

(
0 0
0 1

)
= A1,

(
0 1
0 0

)(
0 0
1 0

)
=

(
1 0
0 0

)
= A2,(

0 0
0 1

)(
0 0
1 0

)
=

(
0 0
1 0

)
= A3.

Using C-linear combinations of the obtained matrices, we get aA2 + bA+ cA3 + dA1 =
(
a b
c d

)
, for all a, b, c, d ∈ C,

therefore I = Mat2(C). In fact, Mat2(C) contains only zero and itself as two-sided ideals.

(b) Notice that in (a), the rows in the the matrices in the left ideal in Mat2(C) span the same subspace in C2: this is
the subspace of vectors of the form

(
0
a

)
. This holds in general, and follows from matrix multiplication: the product

of two matrices MA is a matrix whose rows are linear combinations of the rows of A, as shown here:
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann




R1

R2

...
Rn

 =


a11R1 + a12R2 + · · ·+ a1nRn

a21R1 + a22R2 + · · ·+ a2nRn

...
an1R1 + an2R2 + · · ·+ annRn

 .

If you have two matrices with rows in the same subspace of Cn, then their C-linear combination is also a matrix
with rows in the same subspace. Let L be a left ideal in Matn(C), and let us define V (L) to be the vector subspace
in Cn of first rows of matrices in the ideal L ∈ Matn(C) (it is straightforward to check that it is indeed a vector
space). Then we have a well-defined map from the ideals in Matn(C) to subspaces in Cn. Conversely, let L(V ) be
the ideal of matrices with rows in V (again it is clear that it is a subspace and we checked that it is a left ideal
in the computation above). We claim that V (L(V )) = V and L(V (L)) = L. Firstly, V (L(V )) ⊆ V as every row
of an element of L(V ) is an element of V , in particular the first row is. To get that V (L(V )) ⊇ V , note that for
any v ∈ V , the matrix having only v in the first row is an element of L(V ), so that v ∈ V (L(V )). For the other
equality, observe that if M ∈ L(V (L)), then every row Ri of M is the first row of some Li in the ideal L. Recall
that Eij is the matrix that has zeros everywhere except for the position (i, j) where the entry is 1. Then, using
our computation above, we have that M =

∑n
i=1Ei1Li, so that M ∈ L and L(V (L)) ⊆ L. Finally, if M ∈ L,

every row Ri is the first row of E1iM ∈ L, proving that L(V (L)) ⊇ L and the claim.

Therefore, there is a 1-1 correspondence between the left ideals in Matn(C) and subspaces in Cn. If we recall that
vector subspaces in Cn are in fact left submodules of Cn over C, and left ideals in an algebra are 1-1 with the
submodules of its left regular representation, then we have a 1-1 correspondence between left C-submodules of Cn

and left submodules of the regular representation of Matn(C). The set of all complex subspaces of Cn of dimension
m is called the Grassmannian Grm(n). So we have that the set of all left ideals in Matn(C) is parametrized by
the elements of all Grassmannians Grm(n)0≤m≤n.

In particular, if we consider the case C2, the only nontrivial (different from zero and the whole algebra) left ideals
in Matn(C) are in 1-1 correspondence with all 1-dimensional subspaces in C2, therefore with the elements of the
Grassmannian Gr(1, 2), or the set of all lines in C2. This set is called the complex projective space P1.

(c) Suppose that you have an ideal J that contains a matrix with a nonzero entry aij . Multiplying by the matrix Eii

on the left kills all rows except the ith row. Then multiplying by the matrix Ejj on the right kills all columns
except for the j-th column. Now the resulting matrix has just one nonzero entry aij , and dividing by aij we obtain
that Eij ∈ J . Moreover, for any 1 ≤ k, l ≤ n, multiplying by Eki on the left and Ejl on the right, we obtain
EkiEijEjl = Ekl ∈ J , because every element of the canonical basis is sent to 0 except el which is sent to ek.
Finally by considering linear combinations of these elementary matrices, we can obtain any matrix in Matn(C).
Therefore, if there is a matrix with at least one nonzero element in J , then J = Matn(C). Then the only two
ideals in Matn(C) are 0 and Matn(C). Recall from the course that such algebras are called simple.



(d) The set of two-sided ideals in Matn(Z) is in 1-1 correspondence with N. Recall that the ideals in the ring Z
are principal, for each m ∈ N there is an ideal (m) ⊂ Z of multiples of n. Let (m) ⊂ Z be an ideal and let
Jm = Matn((m)) be the set of all matrices with entries in (m). Clearly, Jm is an ideal in Matn(Z). Conversely,
let J ∈ Matn(Z) be a two-sided ideal, and let I(J) ⊂ Z be the set of all (1, 1) entries of all matrices in J . Then
I(J) is an ideal in Z: if m,n ∈ I(J) and r ∈ Z, then we have matrices M,N ∈ J with M11 = m,N11 = n, so that
rm+ n = rM11 +N11 = (rM +N)11 ∈ I(J). By our initial remark, we have I(J) = (m) for some m ∈ N and we
now claim that J = Jm. For any A ∈ J , we have that aij is the (1, 1) entry of E1iAEj1 ∈ J , so that aij ∈ (m) and
A ∈ Jm. Conversely, to prove that Jm ⊆ J , we proceed in the same fashion as in (c). As m ∈ (m), there is some
matrix A ∈ J such that A11 = m. Then, not only E11AE11 = mE11 ∈ J , but also Ei1(mE11)E1j = mEij ∈ J .
Considering Z-linear combinations of these matrices, we finally have that Jm ⊆ J , finishing the proof of the claim.

Thus there is a 1-1 correspondence between the two-sided ideals in the ring Matn(Z) and the ideals in Z, that are
parameterized by N.

Exercise 4. Use the isomorphism S ∼= A/I for a maximal left ideal I ⊂ A to show that a simple module S over
A = Matn(C) is isomorphic to Cn.

Solution 4. Set A := Matn(C) and let S be a simple A-module. Then S is cyclic and therefore S ∼= A/I for some left
ideal I of A by Exercise 2 in PS 4. Note that I has to be a maximal left ideal as S is simple, otherwise there would
exist a left ideal J with I ( J ( A and J/I would be a proper non-zero submodule of A/I ∼= S, a contradiction. Now
recall from Exercise 3 PS 4 that there is a bijection

{ subspaces of Cn } L−−→ { left ideals in A }

that sends a subspace W ⊆ Cn to the ideal L(W ) of matrices with rows in W (this correspondence between left ideals
in Matn(C) and subspaces in Cn is called the Morita equivalence). This bijection is inclusion-preserving, so maximal
ideals correspond to maximal subspaces and it follows that I = L(V ) for some subspace V ⊆ Cn with dimV = n− 1.
Then Cn/V is one-dimensional, so there exists a linear map ϑ : Cn → C with ker(ϑ) = V . We define a linear map
ϕ : A→ Cn by

M =


r1
r2
...
rn

 7→

ϑ(r1)
ϑ(r2)

...
ϑ(rn)

 ,

where r1, . . . , rn ∈ Cn are the rows of the matrix M . Using the definition of matrix multiplication, we see that ϕ is a
homomorphism of A-modules (see also the computation in the solution to part (b) of Exercise 3 PS 4). Furthermore,
ϕ is surjective since ϑ is surjective and ker(ϕ) = L(V ) = I since ker(ϑ) = V . Using the isomorphism theorem, we
conclude that

S ∼= A/I = A/L(V ) = A/ ker(ϕ) ∼= im(ϕ) = Cn,

as required.


