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Exercise 1. Let ρ : G → GL(1,C) = C∗ be a representation of a finite group G over C. Show that ‖ρ(g)‖ = 1,
∀ g ∈ G, where ‖·‖ is the usual norm on C.

Solution 1. Every element g ∈ G has finite order. Since ρ is a rep and ‖·‖ is multiplicative, we have ‖ρ(g)k‖ =
‖ρ(g)‖k = 1, where k is the order of g ∈ G. Therefore, ‖ρ(g)‖ = 1 for all g ∈ G.

Exercise 2. Let G be a finite group acting by permutations on the elements of a basis of a complex vector space V ,
thus defining a representation of G in V . Show that if dimV > 1, then the representation is not irreducible.

Solution 2. Let ρ : G → GL(V ) be the permutation representation with V having basis B = {ex : x ∈ X}. Let
v =

∑
x∈X ex. Then for all g ∈ G we have ρ(g)v = v. Therefore 〈v〉 is a proper non-zero subrepresentation of V , and

the representation V is not irreducible.

Exercise 3. Let G be a finite group and let ρ : G→ GL(2,C) be a 2-dimensional representation of G over C. Suppose
that there are two elements g, h of G such that ρ(g) and ρ(h) do not commute. Prove that ρ is irreducible.

Solution 3. If ρ is not irreducible, it decomposes as a sum of two irreducible subrepresentations of degree 1, say
U1 = 〈u1〉 and U2 = 〈u2〉. Then ρ1(g) = λ1 ∈ C∗ and ρ2(g) = λ2 ∈ C∗, similarly ρ1(h) = µ1 ∈ C∗ and ρ2(h) = µ2 ∈ C∗.
We have

ρ(g)ρ(h) =

(
λ1 0
0 λ2

)
·
(
µ1 0
0 µ2

)
=

(
µ1 0
0 µ2

)
·
(
λ1 0
0 λ2

)
= ρ(h)ρ(g),

so they commute. This proves that if ρ(g) and ρ(h) do not commute, the two-dimensional representation must be
irreducible. Note that we have used Maschke’s theorem on complete reducibility of complex representations of finite
groups.

Exercise 4. Let ρ : S3 → GL(3,C) be the natural representation where the symmetric group S3 acts by permutations
on an orthonormal basis in C3.

(a) Explicitly find the elements of ρ(S3).

(b) Decompose ρ as a direct sum of irreducible representations.

(c) Is ρ completely reducible, if we replace C with a finite field of two or three elements?

Solution 4. (a) Let {e1, e2, e3} be a standard basis in C3, where S3 acts by permutations. Then we have

ρ((12)) =

 0 1 0
1 0 0
0 0 1

 , ρ((23)) =

 1 0 0
0 0 1
0 1 0

 .

Since the permutations (12) and (23) generate S3, we can obtain the remaining elements by matrix multiplication:

ρ((123)) = ρ((12)) · ρ((23)) =

 0 0 1
1 0 0
0 1 0

 .

ρ((132)) = ρ((23)) · ρ((12)) =

 0 1 0
0 0 1
1 0 0

 .

ρ((13)) = ρ((123)) · ρ((12)) =

 0 0 1
0 1 0
1 0 0

 .

One can easily check that together with ρ(1) = Id these form a representation of S3.



(b) Notice that the vector e1 + e2 + e3 spans a subrepresentation V0 of S3, where S3 acts trivially (just as in Ex. 2
above). Notice that {e1 − e2, e2 − e3} is a basis in an orthogonal complement to V0, which is invariant under the
action of S3 by Maschke’s theorem. The matrices of ρ2((12)) and ρ2((23)) are given in this basis

ρ2((12)) =

(
−1 1
0 1

)
, ρ2((23)) =

(
1 0
1 −1

)
.

Since these matrices do not commute, by Ex. 3 above we have that V2 = 〈e1 − e2, e2 − e3〉 is irreducible and
C3 = V0 ⊕ V2.

(c) The previous decomposition still works over a field F2 of characteristic 2. The representation V0 is a direct summand
in the permutation representation. Let us consider the action of S3 in the subspace V2(F2) = 〈e1 − e2, e2 − e3〉.
The matrix ρ((12)) has the only eigenvalue 1 (also equal to −1 in F2). If we try to find the eigenvectors, we obtain(

−1 1
0 1

)(
a
b

)
=

(
−a+ b
b

)
,

which implies b = 0 in F2. But the vector (1, 0)T is not invariant under the action of ρ((23)):(
1 0
1 −1

)(
1
0

)
=

(
1
1

)
,

therefore the 2-dimensional representation V2(F2) is irreducible. Thus we get complete reducibility of this particular
3-dimensional representation over F2. (This does not imply complet reducibility of any representation of S3 over
F2, in fact we proved in class the converse to Maschke’s theorem: if any finite dimensional representation of G is
completely reducible, then char(k) does not divide |G|.
The decomposition obtained in (b) does not hold over a field of characteristic 3, since in this case e1 + e2 + e3 ∈
〈e1−e2, e2−e3〉. Still, we have that the only one-dimensional subrepresentation of the permutation representation
V3(F3) is V0 = 〈e1 + e2 + e3〉. To show that the permutation representation over F3 it is indecomposable we can
consider the action of ρ((123)) in V3(F3). The eigenvalues of ρ((123)) are third roots of unity, but in F3 the only
solution of λ3 = 1 is λ = 1, so there is only one eigenvalue λ = 1. To find the eigenvectors we compute 0 0 1

1 0 0
0 1 0

 a
b
c

 =

 c
a
b

 = 1 ·

 a
b
c

 ,

the only solution is a = b = c and the the only eigenvector is e1 + e2 + e3. The matrix of this action is not
block-diagonalizable and therefore the representation is indecomposable over F3 (See the example of the regular
representation of the cyclic group C3 over F3 that we considered in Lecture 3).

Exercise 5. Let G = 〈a〉 be a cyclic group of prime order p. Define ρ : G→ GL(2,Fp) by

ρ(ar) =

(
1 r
0 1

)
,∀ 0 ≤ r ≤ p− 1.

(a) Show that ρ is a representation of G over Fp.

(b) Show that ρ is not irreducible.

(c) Show that ρ cannot be decomposed as a direct sum of irreducible representations.

Solution 5. (a) It suffices to define a representation on a generator of the group, and check that the relations hold:

ρ(a) =

(
1 1
0 1

)
, =⇒ ρ(ar) =

(
1 1
0 1

)r

=

(
1 r
0 1

)
, 0 ≤ r ≤ p− 1

so that ρ(ar) = ρ(a)r is well defined, and

ρ(ap) =

(
1 1
0 1

)p

=

(
1 0
0 1

)
= ρ(1).

(b) The 1-dimensional subspace 〈(1, 0)T 〉 is invariant under the action of ρ(a).



(c) Suppose that the given representation is completely reducible. Then it decomposes as a direct sum of two irre-
ducible 1-dimensional representations. We have already found in (b) one invariant subspace spanned by the vector
(1, 0)T . Let us show that there are no other 1-dimensional invariant subspaces. Since the group is generated by
a, it suffices to consider the eigenvectors of ρ(a). The matrix of ρ(a) has a unique eigenvalue 1 and if we solve for
the eigenvectors, we have (

1 1
0 1

)(
a
b

)
=

(
a+ b
b

)
= 1 ·

(
a
b

)
.

This implies b = 0 (mod p), so we have the only one-dimensional subrepresentation spanned by (1, 0)T . Therefore
the defined two-dimensional representation over Fp is indecomposable.

Exercise 6. Let G = (Z,+), an infinite cyclic group. Define the C-representation ρ : G→ GL(2,C) by

ρ(n) =

(
1 n
0 1

)
,∀ n ∈ Z.

Show that ρ is not completely reducible. (Maschke’s Theorem fails for infinite groups).

Solution 6. After checking that the representation is well defined, meaning that ρ(n + m) = ρ(n)ρ(m) for integers
n,m, we can consider the question of complete reducibility. Here similarly to Ex. 5 we can look for an invariant
subspace of ρ(1), since 1 ∈ Z generates the additive group (Z,+) (Recall that 0 ∈ Z is the neutral element of the
additive group (Z,+), so that ρ(0) = Id and not ρ(1)). We have(

1 1
0 1

)(
a
b

)
=

(
a+ b
b

)
= 1 ·

(
a
b

)
.

Therefore b = 0 and (1, 0)T generates the only invariant 1-dimensional subspace. Therefore the representation is
indecomposable and not completely reducible.


