October 1, 2024

Problem Set 3

Exercise 1. Let $\rho: G \to GL(1,\mathbb{C}) = \mathbb{C}^*$ be a representation of a finite group G over \mathbb{C} . Show that $\|\rho(g)\| = 1$, $\forall g \in G$, where $\|\cdot\|$ is the usual norm on \mathbb{C} .

Exercise 2. Let G be a finite group acting by permutations on the elements of a basis of a complex vector space V, thus defining a representation of G in V. Show that if $\dim V > 1$, then the representation is not irreducible.

Exercise 3. Let G be a finite group and let $\rho: G \to GL(2,\mathbb{C})$ be a 2-dimensional representation of G over \mathbb{C} . Suppose that there are two elements g, h of G such that $\rho(g)$ and $\rho(h)$ do not commute. Prove that ρ is irreducible.

Exercise 4. Let $\rho: S_3 \to GL(3,\mathbb{C})$ be the natural representation where the symmetric group S_3 acts by permutations on an orthonormal basis in \mathbb{C}^3 .

- (a) Explicitly find the elements of $\rho(S_3)$.
- (b) Decompose ρ as a direct sum of irreducible representations.
- (c) Is ρ completely reducible, if we replace $\mathbb C$ with a finite field of two or three elements?

Exercise 5. Let $G = \langle a \rangle$ be a cyclic group of prime order p. Define $\rho: G \to GL(2, \mathbb{F}_p)$ by

$$\rho(a^r) = \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix}, \forall \ 0 \le r \le p - 1.$$

- (a) Show that ρ is a representation of G over \mathbb{F}_p .
- (b) Show that ρ is not irreducible.
- (c) Show that ρ cannot be decomposed as a direct sum of irreducible representations.

Exercise 6. Let $G = (\mathbb{Z}, +)$, an infinite cyclic group. Define the \mathbb{C} -representation $\rho: G \to GL(2, \mathbb{C})$ by

$$\rho(n) = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}, \forall n \in \mathbb{Z}.$$

Show that ρ is not completely reducible. (Maschke's Theorem fails for infinite groups).