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Exercise 1. Let (V, ρ) be a finite dimensional representation of an associative algebra A. Show that V has an
irreducible subrepresentation.

Solution 1. If V is irreducible, we are done. If not, by definition there exists a nonzero subrepresentation W1 ⊂ V
such that W1 6= V , so dimW1 < dimV. Then if W is irreducible, we are done, if not we can find W2 ⊂ W1 such
that dimW2 < dimW1, and so on. The process terminates in an irreducible representation, because the dimensions
are always decreasing and any 1-dimensional representation of A is irreducible by definition: the only subspaces in a
1-dimensional space is 0 and itself.

Note that this argument does not work in V is infinite dimensional.

Exercise 2. In class we discussed representations of associative algebras. There is a similar notion of a representation
of a group. Namely, if G is a group, then a representation ρ of G over a field K is a K-vector space V together with a
group homomorphism

ρ : G→ GL(V ),

where GL(V ) is the group of all invertible linear transformations of the vector space V .
Show that the non-isomorphic representations of a finite group G over a field K are in one-to-one correspondence

with the non-isomorphic representations of the algebra K[G].

Solution 2. Take a representation ρ : G → GL(V ), then for each a =
∑
g agg, where ag ∈ K, the map ρ′ : K[G] →

End(V ), ρ′(a) =
∑
g agρ(g) is a representation of K[G]. Indeed, this is a linear map sending 1 · e to id and for

a =
∑
g agg and b =

∑
h bhg, we have that ρ′(ab) = ρ′(

∑
g,h agbhgh) =

∑
g,h agbhρ(gh) =

∑
g,h agbh(ρ(g) ◦ ρ(h)) =

(
∑
g agρ(g)) ◦ (

∑
h bhρ(g)) = ρ′(a) ◦ ρ′(b).

Conversely, for any ρ′ : K[G] → End(V ), set ρ(g) = ρ′(g). We claim that ρ(g) is an automorphism of V , i.e.
an isomorphism. This is clear, as ρ(g) ◦ ρ(g−1) = ρ(g−1) ◦ ρ(g) = ρ′(e) = id. Hence, this defines a representation
ρ : G→ GL(V ).

We also need to check that ρ1 ' ρ2 if and only if ρ′1 ' ρ′2. If ϕ is an isomorphism of representations between ρ1 and
ρ2, it is also an isomorphism of representations between ρ′1 and ρ′2, as ϕ(ρ′1(a)v) = ϕ(

∑
g agρ1(g)v) =

∑
g agϕ(ρ1(g)v) =∑

g agρ2(g)ϕ(v) = ρ′2(
∑
g agg)ϕ(v) = ρ′2(a)ϕ(v). Conversely, if ϕ is an isomorphism of representations between ρ′1

and ρ′2, it is also an isomorphism of representations between ρ1 and ρ2, proving the equivalence between ρ1 ' ρ2 and
ρ′1 ' ρ′2.

Exercise 3. (a) Let G be a group, V a vector space and ρ : G → GL(V ) be a representation of G, and W be a
subrepresentation of V . Show that W is a representation of G, and that there is a basis B of V such that for all
g ∈ G, the matrix of ρ(g) in B has the following block form:(

M ∗
0 ∗

)
,

where M is a matrix representing ρ(g)|W .

(b) Let ρ : G → GL(V ) be a representation of G, and W be a subrepresentation of V . Show that V/W carries a
natural structure of a representation of G.

Solution 3. (a) The map ρW : G → GL(W ), g 7→ ρ(g) is well-defined since W is a subrepresentation of V , and
is a group homomorphism since ρ is a representation of G. Therefore, W is a representation of G. Moreover,
for al g ∈ G, we have ρW (g)(ι(w)) = ρW (g)(w) = ρ(g)(w) = ι(ρ(g)(w)), which shows that ι is a morphism of
representations. It suffices to take a basis of W and complete it to a basis of V .

(b) It suffices to check that the map given by

ρV/W : G −→ GL(V/W )

g 7−→
(

V/W → V/W
v +W 7→ ρ(g)(v) +W

)
is a group homomorphism.



Exercise 4. Let ρ : G→ GL(V ) be a representation of G, and set, for all g ∈ G,

ρ∗(g) = ρ(g−1)T,

that is, ρ∗(g) is the transpose of the linear map ρ(g−1). Show that ρ∗ defines a representation G → GL(V ∗) of G.
This is called the dual representation.

Solution 4. For all g, h ∈ G, we have

ρ∗(gh) = ρ((gh)−1)T = ρ(h−1g−1)tr = ρ(g−1)trρ(h−1)tr = ρ∗(g)ρ∗(h),

Also ρ(e) = Id, so that ρ∗ : G→ GL(V ∗) is a group homomorphism.

Exercise 5. Consider the groups D3 and H3 given by generators and relations as follows:

D3 = 〈r, s : r3 = 1, s2 = 1, srs = r−1〉.

H3 = 〈s1, s2 : s21 = s22 = 1, (s1s2)3 = 1〉.

(a) Show that the two groups are isomorphic (give an explicit isomorphism)

(b) Consider the group algebra C[D3] ' C[H3]. Construct two inequivalent representations of this algebra of dimension
1 over C and show that there are no other inequivalent 1-dimensional representations.

(c) Consider the following maps: ρ1 : C[D3]→ End(C2),

ρ1(r) =

(
cos(2π/3) − sin(2π/3)
sin(2π/3) cos(2π/3)

)
ρ1(s) =

(
1 0
0 −1

)
and ρ2 : C[H3]→ End(C2):

ρ2(s1) =

(
0 1
1 0

)
ρ2(s2) =

(
0 e−2πi/3

e2πi/3 0

)
Check that ρ1 and ρ2 define irreducible representations of the respective algebras.

(d) Using the isomorphism of algebras C[D3] ' C[H3], show that the representations ρ1 and ρ2 defined in (c) are
isomorphic.

Solution 5. (a) In order to define a homomorphism from a group (ar algebra) defined by generators and relations to
another group (or algebra), it is sufficient to define the images of the generators and verify that these satisfy the
same relations. Here, we can define a homomorphism ϕ : D3 → H3 with s 7→ s1 and r 7→ s1s2 since

(s1s2)3 = 1, s21 = 1 and s1(s1s2)s1 = s2s1 = (s1s2)−1,

matching the relations in D3. Similarly, we can define a homomorphism ψ : H3 → D3 with s1 7→ s and s2 7→ sr
since

s2 = 1, (sr)2 = srsr = r−1r = 1 and (ssr)3 = r3 = 1,

matching the relations in H3. Now we have

ψ ◦ ϕ(s) = ψ(s1) = s and ψ ◦ ϕ(r) = ψ(s1s2) = ssr = r,

so ψ ◦ ϕ is the identity on D3 (as s and r generate D3). Analogously, we see that ϕ ◦ ψ is the identity on H3, so
ϕ and ψ are isomorphisms and D3

∼= H3.

(b) The elements of the group D3
∼= H3 form a basis of the group algebra C[D3] ∼= C[H3], so we only need to specify

their images in GL1(C) = C×. We define group homomorphisms λ1 : H3 → C× by g 7→ 1 for all g ∈ D3 and
λ2 : H3 → C× with s1 7→ −1 and s2 7→ −1. Note that λ2 is well defined since

(−1)2 = 1 = (−1)2 = 1 and
(
(−1) · (−1)

)3
= 1.

Now extending λ1 and λ2 to linear maps C[H3]→ C ∼= EndC(C) gives rise to algebra homomorphisms λ̂1 and λ̂2,
respectively, (by definition of the multiplicative structure on C[H3]) and therefore to one-dimensional representa-
tions of C[H3]. As EndC(C) ∼= C is a commutative algebra, any two equivalent one-dimensional representations

must be equal, and as λ̂1 6= λ̂2, we conclude that λ̂1 and λ̂2 are non-equivalent.



Now let λ̂ be an arbitrary one-dimensional representation of C[H3]. Then

λ̂(s1)2 = λ̂(s21) = 1 and λ̂(s2)2 = λ̂(s22) = 1

and therefore λ̂(s1), λ̂(s2) ∈ {±1}. If λ̂(s1) 6= λ̂(s2) then λ̂(s1s2) = λ̂(s1) · λ̂(s2) = −1 and

1 = λ̂
(
(s1s2)3

)
= λ̂(s1s2)3 = −1,

a contradiction. We conclude that λ̂(s1) = λ̂(s2) ∈ {±1} and therefore λ̂ = λ̂1 or λ̂ = λ̂2.

(c) In order to show that ρ1 and ρ2 define representations, it suffices to prove that the images of the generators in
EndC(C2) satisfy the relations defining the groups. For ρ1, it is straightforward to see that(

cos(2π/3) − sin(2π/3)
sin(2π/3) cos(2π/3)

)3

= 1,

(
1 0
0 −1

)2

= 1

and(
1 0
0 −1

)(
cos(2π/3) − sin(2π/3)
sin(2π/3) cos(2π/3)

)(
1 0
0 −1

)
=

(
cos(2π/3) sin(2π/3)
− sin(2π/3) cos(2π/3)

)
=

(
cos(2π/3) − sin(2π/3)
sin(2π/3) cos(2π/3)

)−1
,

matching the relations of D3. Now denote by ζ = e
2π
3 ·i a primitive third root of unity. For ρ2, we obtain(

0 1
1 0

)2

=

(
0 ζ−1

ζ 0

)2

= 1 and

((
0 1
1 0

)(
0 ζ−1

ζ 0

))3

=

(
ζ 0
0 ζ−1

)3

= 1

matching the relations in H3.

If either of the two-dimensional representations ρ1 and ρ2 is not irreducible then it must admit a one-dimensional
subrepresentation, so there exists 0 6= v ∈ C2 such that ρ1(a) · v ∈ C · v for all a ∈ C[D3] (or similarly for ρ2 and
H3). Then v is an eigenvector of ρ1(a) for all a ∈ C[D3]. Now it is straightforward to see that the eigenspaces of
the matrix ρ1(s) (for the eigenvalues 1 and −1, respectively) are spanned by the standard basis vectors e1 and e2.
However, neither of e1 and e2 is an eigenvector of ρ1(r) and it follows that ρ1 is irreducible. Analogously, we find
that the eigenspaces of ρ2(s1) are spanned by e1 + e2 and e1− e2, but neither of these vectors is an eigenvector of
the matrix ρ2(s2), so ρ2 is irreducible.

(d) In order to show that ρ1 and ρ2 define equivalent representations of C[D3] ∼= C[H3], we need to find T ∈ GL2(C)
such that

T · ρ1
(
ψ(g)

)
= ρ2(g) · T

for all g ∈ H3, where ψ : H3 → D3 is the isomorphism from part (a). With T =

(
1 i
1 −i

)
, we have

T · ρ1
(
ψ(s1)

)
=

(
1 i
1 −i

)(
1 0
0 −1

)
=

(
1 −i
1 i

)
=

(
0 1
1 0

)(
1 i
1 −i

)
= ρ2(s1) · T

and (writing a = cos(2π/3) and b = sin(2π/3) so that ζ = a+ ib)

T · ρ1
(
ψ(s2)

)
= T · ρ1(sr) =

(
1 i
1 −i

)(
1 0
0 −1

)(
a −b
b a

)
=

(
1 i
1 −i

)(
a −b
−b −a

)
=

(
a− ib −b− ia
a+ ib −b+ ia

)
=

(
ζ−1 −iζ−1

ζ iζ

)
=

(
0 ζ−1

ζ 0

)(
1 i
1 −i

)
= ρ2(s2) · T

and as s1 and s2 generate H3, we conclude that ρ1 and ρ2 are equivalent.

Exercise 6. Consider the C-algebra U(sl2) generated over C by {e, f, h} with the relations

he− eh = 2e, hf − fh = −2f, ef − fe = h.

(a) Show that the assignment

ρ(h) = x
∂

∂x
− y ∂

∂y
, ρ(e) = x

∂

∂y
, ρ(f) = y

∂

∂x

defines an irreducible representation of U(sl2) on the vector space C2[x, y] of homogeneous polynomials of degree
2.



(b) Consider the 3-dimensional vector space V3 with basis {e, f, h}, and define a map ϑ : U(sl2)→ End(V3) by

ϑ(e)(t) = et− te, ϑ(f)(t) = ft− tf, ϑ(h)(t) = ht− th

for any t ∈ V3. Show that ϑ defines a representation of U(sl2) in V3 and that this representation is isomorphic to
the representation (ρ,C2[x, y]) constructed in (a).

Solution 6. (a) It is sufficient to verify that the endomorphisms ρ(h), ρ(e) and ρ(f) satisfy the relations of U(sl2).
By the product rule and symmetry of second derivatives, we have

x
∂

∂y
◦ y ∂

∂x
− y ∂

∂x
◦ x ∂

∂y
=

(
x
∂

∂x
+ xy

∂

∂x

∂

∂y

)
−
(
y
∂

∂y
+ xy

∂

∂y

∂

∂x

)
= x

∂

∂x
− y ∂

∂y
,

so ρ(e) ◦ ρ(f)− ρ(f) ◦ ρ(e) = ρ(h). Analogously, we compute that(
x
∂

∂x
− y ∂

∂y

)
◦ x ∂

∂y
− x ∂

∂y
◦
(
x
∂

∂x
− y ∂

∂y

)
=

(
x
∂

∂y
+ x2

∂

∂x

∂

∂y
− xy ∂

∂y

∂

∂y

)
−
(
x2

∂

∂y

∂

∂x
− x ∂

∂y
− xy ∂

∂y

∂

∂y

)
= 2 · x ∂

∂y
,

so ρ(h) ◦ ρ(e)− ρ(e) ◦ ρ(h) = 2 · ρ(e), and the third relation ρ(h) ◦ ρ(f)− ρ(f) ◦ ρ(h) = −2 · ρ(f) can be checked
similarly.

To show that V3 is irreducible, let v = ax2 + bxy+ cy2 ∈ V3 be an arbitrary vector. Then action by ρ(e), if needed
twice, maps v to the vector λx2 with λ ∈ C∗. Further acting by ρ(f) on λx2 we can obtain the whole space V3,
since {x2, xy, y2} form a basis in V3. Therefore the representation V3 does not have nontrivial subrepresentations,
and is irreducible.

(b) Again, we need to verify that the endomorphisms ϑ(h), ϑ(e) and ϑ(f) satisfy the relations defining U(sl2). For
t ∈ V3, we have(

ϑ(h) ◦ϑ(e)
)
(t)−

(
ϑ(h) ◦ϑ(e)

)
(t) = ϑ(h)

(
et− te

)
−ϑ(e)(ht− th) = het−hte− eth+ teh− eht+ eth+hte− the

= (he− eh) · t− t · (he− eh) = 2et− 2te = 2 · ϑ(e)(t),

so ϑ(h) ◦ ϑ(e) − ϑ(e) ◦ ϑ(h) = 2 · ϑ(e). The two remaining relations can be checked analogously. Now consider
the linear isomorphism ϕ : V3 → C[x, y]2 with ϕ(e) = −x2/2, ϕ(f) = y2/2 and ϕ(h) = xy. We claim that ϕ is
an isomorphism of representations of U(sl2). To that end, we need to prove that ϕ

(
ϑ(e)(t)

)
= ρ(e)

(
ϕ(t)

)
for all

t ∈ V3 and similarly for f and h. By linearity, it suffices to check this equality for t ∈ {e, f, h}. We have

ϕ
(
ϑ(e)(e)

)
= ϕ(e2 − e2) = 0 = x

∂

∂y
(−x2/2) = ρ(e)

(
ϕ(e)

)
,

ϕ
(
ϑ(e)(f)

)
= ϕ(h) = xy = x

∂

∂y
(y2/2) = ρ(e)

(
ϕ(f)

)
and

ϕ
(
ϑ(e)(h)

)
= ϕ(−2e) = −x2 = x

∂

∂y
(xy) = ρ(e)

(
ϕ(h)

)
.

The computations for f and h are similar and the claim follows.


