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September 17, 2024
Problem Set 1 Solutions

Exercise 1. Let (V,p) be a finite dimensional representation of an associative algebra A. Show that V has an
irreducible subrepresentation.

Solution 1. If V is irreducible, we are done. If not, by definition there exists a nonzero subrepresentation W7 C V
such that W7 # V| so dimW; < dimV. Then if W is irreducible, we are done, if not we can find Wy C W3 such
that dimWsy < dimWj, and so on. The process terminates in an irreducible representation, because the dimensions
are always decreasing and any 1-dimensional representation of A is irreducible by definition: the only subspaces in a
1-dimensional space is 0 and itself.

Note that this argument does not work in V' is infinite dimensional.

Exercise 2. In class we discussed representations of associative algebras. There is a similar notion of a representation
of a group. Namely, if G is a group, then a representation p of G over a field K is a K-vector space V together with a
group homomorphism

p: G — GL(V),

where GL(V) is the group of all invertible linear transformations of the vector space V.
Show that the non-isomorphic representations of a finite group G over a field K are in one-to-one correspondence
with the non-isomorphic representations of the algebra K|[G].

Solution 2. Take a representation p : G — GL(V), then for each a = 3 ayg, where a4 € K, the map p’ : K[G] —
End(V), p'(a) = 3_,agp(g) is a representation of K[G]. Indeed, this is a linear map sending 1 - e to id and for
a =), aq9 and b = 3, bpg, we have that p’(ab) = p'(3_, j, agbngh) = >}, agbnp(gh) = 3_, ; agbn(p(g) o p(h)) =
(5, 290(9)) 0 (S5 wp()) = p/(a) 0 ' (5).

Conversely, for any p' : K[G] — End(V), set p(g
an isomorphism. This is clear, as p(g) o p(g~!) = p(
p:G— GL(V).

We also need to check that p; ~ ps if and only if p} ~ ph. If ¢ is an isomorphism of representations between p; and
p2, it is also an isomorphism of representations between py and pj, as ¢(p} (a)v) = p(3_, agp1(9)v) = >_, agp(p1(g)v) =
>y agp2(9)e(v) = ph(32, agg)p(v) = pha)p(v). Conversely, if ¢ is an isomorphism of representations between p)
and p), it is also an isomorphism of representations between p; and po, proving the equivalence between p; ~ py and
P 2 ph.

p'(g). We claim that p(g) is an automorphism of V, i.e.
o

) =
g Y op(g) = p'(e) = id. Hence, this defines a representation

Exercise 3. (a) Let G be a group, V a vector space and p : G — GL(V) be a representation of G, and W be a
subrepresentation of V. Show that W is a representation of GG, and that there is a basis B of V' such that for all
g € G, the matrix of p(g) in B has the following block form:

(vr+)

(b) Let p : G — GL(V) be a representation of G, and W be a subrepresentation of V. Show that V/W carries a
natural structure of a representation of G.

where M is a matrix representing p(g)|w.

Solution 3. (a) The map pw : G — GL(W),g — p(g) is well-defined since W is a subrepresentation of V, and
is a group homomorphism since p is a representation of G. Therefore, W is a representation of G. Moreover,
for al g € G, we have piy (9)(¢(w)) = pw (9)(w) = p(g)(w) = ¢(p(g)(w)), which shows that ¢ is a morphism of
representations. It suffices to take a basis of W and complete it to a basis of V.

(b) It suffices to check that the map given by

V/IW — V/W
g (v—l—W — p(g)(v)—i—W)

is a group homomorphism.



Exercise 4. Let p: G — GL(V) be a representation of G, and set, for all g € G,

p*(9) =plgH)T

)

that is, p*(g) is the transpose of the linear map p(g—!). Show that p* defines a representation G — GL(V*) of G.
This is called the dual representation.

Solution 4. For all g, h € G, we have
P (gh) = p((gh)™)" = p(h™ g™ 1) = p(g™")"p(h ™) = p*(9)p" (h),
Also p(e) = Id, so that p* : G — GL(V*) is a group homomorphism.
Exercise 5. Consider the groups D3 and Hjs given by generators and relations as follows:
D3 =(rs:r3=1,8=1,srs =7r1).
Hy = (s1,80: 57 =55 =1,(s152)° = 1).
(a) Show that the two groups are isomorphic (give an explicit isomorphism)

(b) Consider the group algebra C[D3] ~ C[Hj3]. Construct two inequivalent representations of this algebra of dimension
1 over C and show that there are no other inequivalent 1-dimensional representations.

(c) Consider the following maps: p; : C[D3] — End(C?),
_( cos(2m/3) —sin(27/3) (1 0
pi(r) = ( sin(27/3)  cos(27/3) ) pi(s) = ( 0 -1 >
and py : C[H3] — End(C?):

0 1 0 o—27i/3
p2(81) = ( 1 0 ) p2(82) = ( e2mi/3 0 )

Check that p; and po define irreducible representations of the respective algebras.

(d) Using the isomorphism of algebras C[D3] ~ C[Hj3], show that the representations p; and py defined in (c) are
isomorphic.

Solution 5. (a) In order to define a homomorphism from a group (ar algebra) defined by generators and relations to
another group (or algebra), it is sufficient to define the images of the generators and verify that these satisfy the
same relations. Here, we can define a homomorphism ¢: D3 — Hs with s +— s; and r — s159 since

(3132)3 =1, s% =1 and 51(8182)s1 = s281 = (8182)_1,

matching the relations in Dj3. Similarly, we can define a homomorphism ¢ : H3 — D3 with s; — s and sg — sr
since
=1, (s)? =srsr=r"1r=1 and (ssT)3 =713 =1,

matching the relations in Hs. Now we have

pop(s) =9(si)=s  and  op(r) =1(sis2) = ssr=r,

s0 1 o @ is the identity on D3 (as s and r generate D3). Analogously, we see that ¢ o ¢ is the identity on Hs, so
 and v are isomorphisms and D3 = Hj.

(b) The elements of the group D3 = Hj form a basis of the group algebra C[D3] = C[Hj], so we only need to specify
their images in GL{(C) = C*. We define group homomorphisms \;: H3 — C* by g — 1 for all g € D3 and
Ao Hz — C* with s; — —1 and sy — —1. Note that Ay is well defined since

(-1)2=1=(=1)>=1 and  ((-1)-(-1))°=1.

Now extending A; and Az to linear maps C[Hs] — C = End¢(C) gives rise to algebra homomorphisms \; and :\2,
respectively, (by definition of the multiplicative structure on C[Hj3]) and therefore to one-dimensional representa-
tions of C[H3]. As End¢(C) = C is a commutative algebra, any two equivalent one-dimensional representations
must be equal, and as 5\1 =+ 5\2, we conclude that 5\1 and 5\2 are non-equivalent.



Now let A be an arbitrary one-dimensional representation of C[Hs]. Then
Ms1)2=AsH) =1  and  A(s2)?=A(s2) =1
and therefore A(s1), A(s2) € {£1}. If A(s1) # A(s2) then A(s1s5) = A(s1) - A(s2) = —1 and
1= 5\((3132)3) = ;\(5152)3 = -1,
a contradiction. We conclude that A(s;) = A(sp) € {£1} and therefore A = A; or A = Xy.

(¢) In order to show that p; and ps define representations, it suffices to prove that the images of the generators in
Endc(C?) satisfy the relations defining the groups. For py, it is straightforward to see that

() iy (5 ) -

and

(5 20) (Somss) o) (5 50) = (Snlenl, oot = (oianss) omort)

27
3

' a primitive third root of unity. For ps, we obtain

GO -5 = ((DES) -6 8-

matching the relations in Hj.

matching the relations of D3. Now denote by ( = e

If either of the two-dimensional representations p; and ps is not irreducible then it must admit a one-dimensional
subrepresentation, so there exists 0 # v € C? such that p;(a)-v € C- v for all a € C[Dj3] (or similarly for p, and
H3). Then v is an eigenvector of pi(a) for all a € C[D3]. Now it is straightforward to see that the eigenspaces of
the matrix p;(s) (for the eigenvalues 1 and —1, respectively) are spanned by the standard basis vectors e; and es.
However, neither of e; and e is an eigenvector of p;(r) and it follows that p; is irreducible. Analogously, we find
that the eigenspaces of p(s1) are spanned by e; + e and e; — ey, but neither of these vectors is an eigenvector of
the matrix pa(s2), so ps is irreducible.

(d) In order to show that p; and py define equivalent representations of C[D3] = C[Hj], we need to find T' € GL2(C)
such that

T pi(¢(g) = pa(g) - T

1
1

ronte) =3 )6 5) =0 )= 8) (L) =men-r

and (writing @ — cos(27/3) and b — sin(27/3) so that ¢ — a + ib)
o) =T = (1 ) (0 %) G =0 ) (G D)= D)
(% )= %) BT

and as s; and s generate Hjz, we conclude that p; and py are equivalent.

for all g € Hs, where ¢: H3 — Ds is the isomorphism from part (a). With 7' = ( _li>7 we have

Exercise 6. Consider the C-algebra U(sly) generated over C by {e, f, h} with the relations
he — eh = 2e, hf— fh=-2f, ef —fe=h
(a) Show that the assignment
0 0 0 0
h = r— — UYy— = r— — 9 —
plh) =25 Yoy, p(e) T3y P =yy

defines an irreducible representation of U(slz) on the vector space Ca[z, y] of homogeneous polynomials of degree
2.



(b) Consider the 3-dimensional vector space V3 with basis {e, f, h}, and define a map 9 : U(slz) — End(V3) b

I(e)(t) = et —te, O(f)(t) = ft—tf, I(h)(t) = ht — th

for any ¢t € V3. Show that ¥ defines a representation of U(sl3) in V3 and that this representation is isomorphic to
the representation (p, Ca[z,y]) constructed in (a).

Solution 6. (a) It is sufficient to verify that the endomorphisms p(h), p(e) and p(f) satisfy the relations of U(sls).
By the product rule and symmetry of second derivatives, we have

PP 00 (0 00N (0, 80y o o
Oy Yor Yor Oy e yaxay 83/ yayax - oz y@y’

so p(e) o p(f) — p(f) o p(e) = p(h). Analogously, we compute that

0 s, oxﬁ_ g 0 0
Yor Yoy ) Toy  Tay " "o yay
990 _, 00 200 0 00N _, 2
8x 8y yay Oy Oy Oz Oy y&‘y oy) oy’
so p(h) o p(e) — p(e) o p(h) = 2 - p(e), and the third relation p(h) o p(f) — p(f) o p(h) = =2 - p(f) can be checked

similarly.

To show that V3 is irreducible, let v = ax? + bxy + cy? € V3 be an arbitrary vector. Then action by p(e), if needed
twice, maps v to the vector A\z? with A € C*. Further acting by p(f) on Az? we can obtain the whole space V3,
since {22, 2y, y*} form a basis in V3. Therefore the representation V3 does not have nontrivial subrepresentations,
and is irreducible.

(b) Again, we need to verify that the endomorphisms 9(h), ¥(e) and J(f) satisfy the relations defining U(sls). For
t € V3, we have

(9(h)od(e))(t) — (9(h) o¥(e))(t) = I(h) (et —te) —V(e)(ht — th) = het — hte — eth + teh — eht + eth + hte — the

= (he —eh) -t —t- (he — eh) = 2et — 2te = 2 - ¥(e)(¢t),
so ¥(h) o ¥(e) — ¥(e) o ¥(h) = 2 - ¥(e). The two remaining relations can be checked analogously. Now consider
the linear isomorphism ¢: V3 — C[z,y]s with p(e) = —22/2, o(f) = y?/2 and ¢(h) = zy. We claim that ¢ is

an isomorphism of representations of U(sly). To that end, we need to prove that ¢(9(e)(t)) = p(e)(p(t)) for all
t € V3 and similarly for f and h. By linearity, it suffices to check this equality for ¢ € {e, f, h}. We have

p(0(e)(€)) = p(e? — ) = 0 = xa%(—m) = () ((e),

o(0()(f)) = (k) = 2y = x§y<y2/2> = (&) (o(f)

and

o(9(e)()) = p(—2¢) = —a? = mgy(w) — p(e) ((R).

The computations for f and h are similar and the claim follows.



