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Exercise 1. Let Vλ denote the Specht module for Sn, where λ is a partition of n.

(a) Show that

ResSnSn−1
Vλ '

⊕
µ∈R(λ)

Vµ,

where R(λ) is the set of Young diagrams obtained by removing one square from Yλ.

(b) Show that

IndSnSn−1
Vµ '

⊕
λ∈A(µ)

Vλ,

where A(µ) is the set of Young diagrams obtained by adding one square from Yµ.

Hint: Use the formula for the character of Vµ in (a) and the Frobenius reciprocity in (b).

Solution 1. (a) Let the conjugacy class Ci ⊂ Sn−1, then Ci ⊂ Sn leaves an element, for example n, invariant.
Therefore Ci has at least one 1-cycle, i1 ≥ 1. Let λ = (λ1, λ2, . . . λp) and N ≥ p. Let ρ = (N − 1, N − 2, . . . 1, 0).
Recall that the character χVλ(Ci) of the Specht module is given by the coefficient of

xλ+ρ =
∏
j

x
λj+N−j
j

in the polynomial

∆(x)
∏
m≥1

Hm(x)im ,

where ∆(x) =
∏
i<j(xi − xj) and Hm(x) =

∑N
k=1 x

m
k . Then χλ(Ci ∩ Sn−1) is the coefficient of xλ+ρ in

∆(x)
∏
m≥2

Hm(x)imH1(x)i1−1(x1 + . . .+ xN ) =
∑
i

xi∆(x)
∏
m≥2

Hm(x)imH1(x)i1−1.

Notice that the coefficient of xλ+ρ in the first element of the sum, x1∆(x)
∏
m≥2Hm(x)imH1(x)i1−1, equals to the

coefficient of xλ1−1+N−1
1

∏
j≥2 x

λj+N−j
j in ∆(x)

∏
m≥2Hm(x)imH1(x)i1−1. Notice also that if λ1 = λ2, then we

have the powers of the first two variables equal : λ1 − 1 + N − 1 = λ2 + N − 2. Then clearly this coefficient is

zero, because a coefficient of a monimial xk1x
k
2

∏
j≥3 x

kj
j is zero in the antisymmetric polynomial ∆(x)

∏
j H

im
m (we

recall that ∆(x) is a completely antisymmetric polynomial, and each Hm(x) is a symmetric polynomial). This
means that the first summand of the sum∑

i

xi∆(x)
∏
m≥2

Hm(x)imH1(x)i1−1

will contribute only if λ1 > λ2 and in this case its contribution is the coefficient of

xλ1−1+N−1
1

∏
j≥2

x
λj+N−j
j

in
∆(x)

∏
m≥2

Hm(x)imH1(x)i1−1,

which is by definition the coefficient of xµ+ρ in it, where µ = (λ1−1, λ2, . . . , λp). This is by definition the character
of the representation Vµ of the element of the conjugacy class Ci ∈ Sn−1.



Similarly, the other nonzero contributions will come from the coefficient of xλ+ρ in

xk∆(x)
∏
m≥2

Hm(x)imH1(x)i1−1,

where λk > λk+1, which means exactly that we can remove a square from the row λk and still obtain a valid Yound
diagram of size n− 1. Each time this contribution will be equal to the coefficient of xµ+ρ, where µk = λk − 1, and
µi = λi for i 6= k, in the polynomial

∆(x)
∏
m≥2

Hm(x)imH1(x)i1−1,

which corresponds to computing the character of Vµ on the conjugacy class Ci ∈ Sn−1, with one fewer 1-cycles
than Ci ∈ Sn. Finally we have that the character of the restriction of the irreducible representation Vλ to Sn−1
equals to the sum of characters of the Specht modules Vµ for Sn−1, where µ is a partition of (n−1) obtained from
the partition λ of n by shortening one row, so that the resulting Young diagram still satisfies the non-increasing
condition. This means that µ ∈ R(λ). We have

χResSnSn−1
Vλ=

∑
µ∈R(λ)

χVµ ,

and
ResSnSn−1

Vλ '
⊕

µ∈R(λ)

Vµ.

(b) We will use (a) and the Frobenius reciprocity result. Suppose that

IndSnSn−1
Vν '

⊕
λ

mλVλ,

where
mλ = dim HomSn(IndSnSn−1

Vν , Vλ) = dim HomSn−1(Vν ,ResSnSn−1
Vλ) =

= dim HomSn−1
(Vν ,

⊕
µ∈R(λ)

Vµ) =

[
1, ν ∈ R(λ),
0, ν /∈ R(λ).

We have ν ∈ R(λ) when Yν is obtained from Yλ by removing a square, which is equivalent to saying that Yλ is
obtained from Yν by adding a square, or λ ∈ A(ν). Therefore,

mλ =

[
1, λ ∈ A(ν),
0, λ /∈ A(ν).

Finally we have

IndSnSn−1
Vν '

⊕
λ∈A(ν)

Vλ,

as required.

Exercise 2. (Transitivity of the induction) Let K ⊂ H ⊂ G be subgroups of a finite group G and V a complex
representation of K. Show that

IndGH IndHKV ' IndGKV.

Hint: Use the tensor product form of the induced representations.

Solution 2. We have IndHKV ' C[H]⊗C[K] V and IndGHW ' C[G]⊗C[H] W . Then

IndGH (IndHKV ) ' IndGH (C[H]⊗C[K] V )

' C[G]⊗C[H] (C[H]⊗C[K] V ) ' (C[G]⊗C[H] C[H])⊗C[K] V ) ' C[G]⊗C[K] V ' IndGKV.

Here we used the isomorphism
C[G]⊗C[H] C[H] ' C[G]

given by the map f : C[G]⊗C[H] C[H]→ C[G], where f : g ⊗ h = gh⊗ 1→ gh.



Exercise 3. (a) Let G be a finite group and VR an irreducible representation of G defined over the real numbers.
Show that its complexification V = C⊗R VR is a representation of real type.

(b) Show that all Specht modules Vλ for Sn are of real type.

(c) Use the Frobenius-Schur indicator to find the sum of dimensions of all irreducible representations of Sn.

Solution 3. (a) Suppose that the representation VR has real entries. Choose 〈 , 〉0 to be a positive definite symmetric
bilinear form on VR. Let 〈 , 〉 be the G-invariant nondegenerate symmetric form on VR (constructed by the Weyl’s
unitary trick, see Lecture 3). Let V = C⊗R VR be the complexification of VR. Then we can define

〈v + iw, u+ iz〉 = 〈v, u〉 − 〈w, z〉+ i〈w, u〉+ i〈v, z〉.

This is a symmetric G-invariant C-bilinear form on V . It is also nondegenerate: If (v, w) 6= (0, 0) we can find (u, z)
such that 〈v + iw, u+ iz〉 6= 0. Indeed, if v 6= 0, we can choose u so that 〈v, u〉 6= 0 and set z = 0, and similarly in
case w 6= 0. Therefore, we have a symmetric G-invariant C-bilinear form on V . This implies that the space S2V ∗

of symmetric bilinear forms on V has a G-invariant element, or that V0 ⊂ S2V as a G-representation, which by
definition means that V ∗ is a representation of real type. Since V ∗ is of real type if and only if V is, we conclude
that V is a representation of real type.

(b) We have the Specht module Vλ defined as Vλ = C[Sn]cλ, where cλ = aλbλ is a rational linear combination of
the elements of Sn. Therefore the action of any g ∈ Sn in Vλ is given by a matrix with rational coefficients, in
particular all matrices ρλ(g) have real values and the representation Vλ is of real type.

(c) The theorem on the Frobenius-Schur indicator claims that the number of all involutions in G (elements of order
≤ 2) equals to

∑
V FS(V ) over the irreducible representations, where FS(V ) = 1 if V is of real type, 0 if

it is of complex type and −1 if it is of quaternionic type. In case of Sn we have by (b) that all irreducible
representations of the symmetric group Sn are of real type, therefore the sum of the dimensions of the irreducible
representations of Sn equals the number of involutions of Sn. The involutions of Sn are the permutations of cycle
type (2, 2, 2, ...2) or the identity element. We can present these elements as products of (possibly zero) disjoint
transpositions. Therefore the number of involutions can be computed by summing over all possible choices of
disjoint transpositions. For example, we have

(
n
2

)
transpositions in Sn. To find the number of different products of

k disjoint transpositions, we have to choose 2k numbers out of n and then pair them up. In a set of 2k elements,
we have (2k−1)!! = (2k−1)(2k−3) . . . 1 possible pairings, they are called perfect matchings of the complete graph
of 2k vertices. Indeed, we have (2k − 1) ways to find a pair for the first element, and once this choice is done, we
have (2k− 3) ways to pair off the second element, and so on till we exhaust the available elements. Therefore, the
total number Ninv of involutions in Sn equals to

Ninv =

[n/2]∑
k=0

(
n

2k

)
(2k − 1)!!

This also equals to the sum of the dimensions of all irreducible representations of Sn:

∑
V ∈Irr(Sn)

dimV = Ninv =

[n/2]∑
k=0

(
n

2k

)
(2k − 1)!!


