December 17, 2024

Problem Set 13 Solutions

Exercise 1. Let V_{λ} denote the Specht module for S_n , where λ is a partition of n.

(a) Show that

$$\operatorname{Res}_{S_{n-1}}^{S_n} V_{\lambda} \simeq \bigoplus_{\mu \in R(\lambda)} V_{\mu},$$

where $R(\lambda)$ is the set of Young diagrams obtained by removing one square from Y_{λ} .

(b) Show that

$$\operatorname{Ind}_{S_{n-1}}^{S_n} V_{\mu} \simeq \bigoplus_{\lambda \in A(\mu)} V_{\lambda},$$

where $A(\mu)$ is the set of Young diagrams obtained by adding one square from Y_{μ} .

Hint: Use the formula for the character of V_{μ} in (a) and the Frobenius reciprocity in (b).

Exercise 2. (Transitivity of the induction) Let $K \subset H \subset G$ be subgroups of a finite group G and V a complex representation of K. Show that

$$\operatorname{Ind}_H^G \operatorname{Ind}_K^H V \simeq \operatorname{Ind}_K^G V.$$

Hint: Use the tensor product form of the induced representations.

Exercise 3. (a) Let G be a finite group and V_R an irreducible representation of G defined over the real numbers. Show that its complexification $V = \mathbb{C} \otimes_{\mathbb{R}} V_R$ is a representation of real type.

- (b) Show that all Specht modules V_{λ} for S_n are of real type.
- (c) Use the Frobenius-Schur indicator to find the sum of dimensions of all irreducible representations of S_n .