December 10, 2024

Problem Set 12 Solutions

Exercise 1. Recall that an irreducible Specht module V_{λ} for S_n is determined by a partition $\lambda = (\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \ldots \ge \lambda_p)$, such that $\sum_{i=1}^p \lambda_i = n$. It can be defined by $V(\lambda) = \mathbb{C}[S_n]c_{\lambda}$, where $c_{\lambda} = a_{\lambda}b_{\lambda}$ with

$$a_{\lambda} = \frac{1}{|P_{\lambda}|} \sum_{g \in P_{\lambda}} g; \quad b_{\lambda} = \frac{1}{|Q_{\lambda}|} \sum_{g \in Q_{\lambda}} (-1)^g g.$$

Here the subgroups $P_{\lambda} \in S_n$ and $Q_{\lambda} \in S_n$ are the stabilizers respectively of rows and columns of a Young tableau T_{λ} of shape λ .

- (a) In class we showed that $c_{\lambda}^2 = x(\lambda)c_{\lambda}$, where $x(\lambda) \in \mathbb{Q}$ is a coefficient. Find $x(\lambda)$. Hint: Consider the action of c_{λ} in the regular representation of S_n .
- (b) Let $C = \sum_{i < j} (ij) \in \mathbb{C}[S_n]$ be the sum of all transpositions. Show that C acts on the Specht module V_{λ} by multiplication by the scalar $z(\lambda) = \sum_{j=1}^{p} \sum_{i=1}^{\lambda_j} (i-j)$. (The integer $z(\lambda)$ is called the *content* of the Young diagram of shape λ .)
- **Solution 1.** (a) The element c_{λ} is proportional to an idempotent because $c_{\lambda}^2 = a_{\lambda}(b_{\lambda}a_{\lambda})b_{\lambda} = x(\lambda)c_{\lambda}$. If κ is an eigenvalue of c_{λ} in any representation, then $\kappa^2 = x(\lambda)\kappa$, and $\kappa = x(\lambda)$ or $\kappa = 0$. To find the nonzero eigenvalue of c_{λ} , notice that since $P_{\lambda} \cap Q_{\lambda} = \{1\}$, the coefficient of 1 in c_{λ} is $\frac{1}{|P_{\lambda}||Q_{\lambda}|}$. Taking the trace of c_{λ} in the regular representation, we get

$$\operatorname{tr}(\rho(c_{\lambda})) = \frac{n!}{|P_{\lambda}||Q_{\lambda}|}.$$

On the other hand, $c_{\lambda}V_{\lambda}$ is one-dimensional, and $c_{\lambda}V_{\mu}=0$ if $\mu \neq \lambda$. We have

$$\operatorname{tr}(\rho(c_{\lambda})) = \operatorname{tr}(c_{\lambda}) \left(\oplus_{\mu} V_{\mu}^{\otimes \operatorname{dim}(V_{\mu})} \right) = \operatorname{dim}(V_{\lambda}) \kappa.$$

Therefore,

$$\kappa = x(\lambda) = \frac{n!}{|P_{\lambda}||Q_{\lambda}|\dim(V_{\lambda})}.$$

Using the hook length formula for $\dim(V_{\lambda})$, we get

$$x(\lambda) = \frac{\prod_{i,j \in \lambda} h(i,j)}{\prod_j \lambda_j \prod_i \lambda_i^*},$$

where λ_j is the number of boxes in the jth row of the Young diagram of λ , λ_i^* – the number of boxes in the ith column, and h(i,j) – the length of the hook starting at the square (i,j).

(b) First, notice that C is central: $gCg^{-1} = \sum_{i < j} g(i,j)g^{-1} = \sum_{i < j} (g(i),g(j)) = C$. Therefore, C acts on V_{λ} by a scalar, and we have $C \cdot c_{\lambda} = z(\lambda)c_{\lambda}$. Then $C \cdot c_{\lambda} = Ca_{\lambda}b_{\lambda} = a_{\lambda}Cb_{\lambda}$. We have:

$$a_{\lambda}(i,j)b_{\lambda} = \left\{ \begin{array}{ll} a_{\lambda}b_{\lambda} = c_{\lambda}, & \text{if} \ (i,j) \in P_{\lambda} \\ -a_{\lambda}b_{\lambda} = -c_{\lambda}, & \text{if} \ (i,j) \in Q_{\lambda} \end{array} \right.$$

If $(i,j) \notin P_{\lambda} \cup Q_{\lambda}$, then i and j are in different rows and different columns of the Young diagram. Suppose i is in the longest of the two rows. Then there is a transposition in P_{λ} , (i,s), that moves i to the column of j, and $(i,j)(i,s)(i,j)=(j,s)\in Q_{\lambda}$. Then, similarly to the proof we did in class, we have

$$a_{\lambda}(i,j)b_{\lambda} = a_{\lambda}(i,s)(i,j)b_{\lambda} = a_{\lambda}(i,j)(j,s)b_{\lambda} = -a_{\lambda}(i,j)b_{\lambda} = 0.$$

So the value of $z(\lambda)$ is the number of all transpositions in P_{λ} minus the number of all transpositions in Q_{λ} . This number is

$$z(\lambda) = \sum_{j=1}^{p} \sum_{i=1}^{\lambda_j} (i-1) - \sum_{j=1}^{p} \lambda_j \cdot (j-1) = \sum_{j=1}^{p} \sum_{i=1}^{\lambda_j} (i-1) - \sum_{j=1}^{p} \sum_{i=1}^{\lambda_j} (j-1) = \sum_{j=1}^{p} \sum_{i=1}^{\lambda_j} (i-j).$$

Exercise 2. Let $G = SL(2, \mathbb{F}_q)$ be the group of 2×2 matrices of determinant 1 with coefficients in the field of q elements \mathbb{F}_q ($q \ge 3$ a prime). Consider the 2-dimensional \mathbb{F}_q -vector space V with the basis $e_1 = (1,0)$ and $e_2 = (0,1)$.

- (a) Find the order of G.
- (b) Show that G acts transitively on $V \setminus \{(0,0)\}$.
- (c) Find the stabilizer $N \subset G$ of e_1 .
- (d) Show that the representation (F, ρ) of G in the complex vector space F of functions $f: V \setminus \{(0,0)\} \to \mathbb{C}$ given by

$$\rho \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \cdot f(x,y) = f(dx - by, -cx + ay)$$

is isomorphic to the induced representation of G from the trivial representation of N.

- (e) Use Frobenius reciprocity to deduce that ρ is not irreducible.
- Solution 2. (a) The condition ad-bc=1 means that if $a \neq 0$, then d is uniquely determined with any values of b and c, and if a=0, then b and c have to be nonzero. In the first case, we have $(q-1)q^2$ possibilities, and in the second, q(q-1), q choices for d and (q-1) for b. Totally, the order of G is $(q-1)q^2+q(q-1)=(q-1)(q^2+q)=q(q^2-1)$. Another way to look at it is to first compute the order of the group of invertible matrices $GL(2, \mathbb{F}_q)$. To be invertible, the columns have to be linearly independent. So we have q^2-1 choices for the first column (it has to be nonzero) and q^2-q choices for the second column that cannot be a multiple of the first. Then the order of $GL(2,\mathbb{F}_q)$ is $(q^2-1)(q^2-2)$. Now consider the group homomorphism det: $GL(2,\mathbb{F}_q) \to (\mathbb{F}_q)^*$. The kernel is by definition isomorphic to $SL(2,\mathbb{F}_q)$. Since the order of the image is (q-1), we get the order of $SL(2,\mathbb{F}_q)$ equal to $(q^2-1)(q^2-q)/(q-1)=q(q^2-1)$ as before.
- (b) This amounts to checking that any vector (x, y) can be transformed into, say, (0, 1) by the action of G. We have

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} ax + by \\ cx + dy \end{array}\right) = \left(\begin{array}{c} 0 \\ 1 \end{array}\right).$$

With the condition ad - bc = 1, if $y \neq 0$, then $a = y, b = -x, d = \frac{1+bc}{a}$. If y = 0, set $a = 0, b = -x, c = \frac{1}{x}$, and d is arbitrary. The inverse matrix then will map (0,1) to any given vector (x,y). Therefore, the action of G on $V \setminus \{0\}$ is transitive.

(c) By direct computation, the stabilizer of $e_1 = (1,0)$ is

$$N = \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array}\right),$$

where $b \in \mathbb{F}_q$ is arbitrary. Check by the orbit-stabilizer theorem, knowing from (b) that the orbit of any vector is $V \setminus \{0\}$:

$$|N| \cdot |\operatorname{Orb}(e_1)| = |N| \cdot |V \setminus \{0\}| = q \cdot (q^2 - 1)) = q(q^2 - 1) = |G|.$$

The order of $V \setminus \{0\}$ is given by all 2-vectors except the zero vector.

(d) Let F denote the given representation of G. Since G acts transitively on $V \setminus \{0\}$, we can represent obtain any vector $(x,y)^T$ as the result of action of an element $g \in G$ on e_1 : $(x,y)^T = g^{-1}e_1$. Let V_0 be the trivial representation of N and consider the map $\Phi : \operatorname{Ind}_N^G V_0 \to F$ defined by

$$\Phi(f)(x,y) = \Phi(f)(g^{-1}e_1) = f(g).$$

Then it is a G- homomorphism. Let $t \in G$, then

$$\Phi(tf)(x,y) = \Phi(tf)(g^{-1}e_1) = tf(g) = f(gt) = \Phi(f)((gt)^{-1}e_1) = \Phi(f)(t^{-1}g^{-1}e_1) = t\Phi(f)(g^{-1}e_1) = t\Phi(f)(x,y).$$

Here we used that the action of $t \in G$ of a function $\Phi(f) \in F$ is by $t\Phi(f)(x,y) = \Phi(f)(t^{-1}(x,y))$.

If $\Phi(f)(V \setminus \{0\}) = 0$, then f(G) = 0, so the kernel of Φ is trivial. Characteristic functions of the elements in $V \setminus \{0\}$ form a basis of F. The representation $\operatorname{Ind}_N^G V_0$ has dimension |G|/|N|, which equals to $|\operatorname{Orb}(e_1)| = |V \setminus \{0\}|$ by (c). Therefore, Φ is an isomorphism of representations of G.

(e) Let W_0 be the trivial representation of G. Frobenius reciprocity shows that the multiplicity of the trivial representation of G in Ind_N^G is 1:

$$\operatorname{Hom}_G(W_0, \operatorname{Ind}_N^G V_0) = \operatorname{Hom}_N(\operatorname{Res}_N^G(W_0), V_0) = \operatorname{Hom}_N(V_0, V_0) = 1.$$

This is a general result: an induction from a trivial representation of a subgroup always contains the trivial representation of the group as a subrepresentation. In this particular case, the trivial subrepresentation corresponds to the subspace of constant functions on $V \setminus \{0\}$.

Exercise 3. Let $K \subset G$ be a subgroup, and \mathbb{C}_{χ} a one-dimensional representation of K with character $\chi : K \to \mathbb{C}^{\star}$. Consider the central idempotent corresponding to χ :

$$e_{\chi} = \frac{1}{|K|} \sum_{g \in K} \chi(g)^{-1} g \in \mathbb{C}[K].$$

Show that the induced representation $\operatorname{Ind}_{\mathbf{K}}^{\mathbf{G}}\mathbb{C}_{\chi}$ is naturally isomorphic to $\mathbb{C}[G]e_{\chi}$, with the action of G in $\mathbb{C}[G]e_{\chi}$ by left multiplication.

Solution 3. Let $k \in K$, and $\{x_i\} \in G, i = 1, \dots, |G/K|$ be the representatives of the left cosets G/K. Then

$$ke_{\chi} = \frac{1}{|K|} \sum_{g \in K} \chi(g)^{-1} kg = \frac{1}{|K|} \sum_{t \in K} \chi(k^{-1}t)^{-1} t = \chi(k)e_{\chi}.$$

Any element of G can be written uniquely as $g = x_i k$ for some $x_i \in G/K$ and some $k \in K$. Then

$$\mathbb{C}[x_i k e_{\chi}] = \mathbb{C}[\chi(k) x_i e_{\chi}] = \mathbb{C}[x_i e_{\chi}].$$

The elements $\{x_i e_\chi\}, i=1,\ldots |G/K|$ form a basis in $\mathbb{C}[G]e_\chi$. Similarly, the elements $\{x_i \otimes_{\mathbb{C}[K]} \mathbb{C}_\chi\}, i=1,\ldots |G/K|$ form a basis in

$$\operatorname{Ind}_K^G\mathbb{C}_\chi\simeq \mathbb{C}[G]\otimes_{\mathbb{C}[K]}\mathbb{C}_\chi.$$

Then map $\Phi: \mathbb{C}[G] \otimes_{\mathbb{C}[K]} \mathbb{C}_{\chi} \to \mathbb{C}[G]e_{\chi}$ given by $\Phi(g \otimes_{\mathbb{C}[K]} \mathbb{C}_{\chi}) = ge_{\chi}$ for any $g \in G$ sends the basis to the basis and commutes with the action of G: if $g_1g = x_jk$ for some x_j and some $k \in K$, then

$$\Phi(g_1g \otimes_{\mathbb{C}[K]} \mathbb{C}_{\chi}) = \Phi(x_jk \otimes_{\mathbb{C}[K]} \mathbb{C}_{\chi}) = \chi(k)\Phi(x_j \otimes_{\mathbb{C}[K]} \mathbb{C}_{\chi}) = \chi(k)x_je_{\chi} =$$

$$= x_jke_{\chi} = g_1ge_{\chi} = g_1\Phi(g \otimes_{\mathbb{C}[K]} \mathbb{C}_{\chi}).$$