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Exercise 1. Recall that an irreducible Specht module Vλ for Sn is determined by a partition λ = (λ1 ≥ λ2 ≥ λ3 ≥
. . . ≥ λp), such that

∑p
i=1 λi = n. It can be defined by V (λ) = C[Sn]cλ, where cλ = aλbλ with

aλ =
1

|Pλ|
∑
g∈Pλ

g; bλ =
1

|Qλ|
∑
g∈Qλ

(−1)gg.

Here the subgroups Pλ ∈ Sn and Qλ ∈ Sn are the stabilizers respectively of rows and columns of a Young tableau Tλ
of shape λ.

(a) In class we showed that c2λ = x(λ)cλ, where x(λ) ∈ Q is a coefficient. Find x(λ). Hint: Consider the action of cλ
in the regular representation of Sn.

(b) Let C =
∑
i<j(ij) ∈ C[Sn] be the sum of all transpositions. Show that C acts on the Specht module Vλ by

multiplication by the scalar z(λ) =
∑p
j=1

∑λj
i=1(i − j). (The integer z(λ) is called the content of the Young

diagram of shape λ.)

Solution 1. (a) The element cλ is proportional to an idempotent because c2λ = aλ(bλaλ)bλ = x(λ)cλ. If κ is an
eigenvalue of cλ in any representation, then κ2 = x(λ)κ, and κ = x(λ) or κ = 0. To find the nonzero eigenvalue
of cλ, notice that since Pλ ∩Qλ = {1}, the coefficient of 1 in cλ is 1

|Pλ||Qλ| . Taking the trace of cλ in the regular
representation, we get

tr(ρ(cλ)) =
n!

|Pλ||Qλ|
.

On the other hand, cλVλ is one-dimensional, and cλVµ = 0 if µ 6= λ. We have

tr(ρ(cλ)) = tr(cλ)
(
⊕µV⊗dim(Vµ)

µ

)
= dim(Vλ)κ.

Therefore,

κ = x(λ) =
n!

|Pλ||Qλ|dim(Vλ)
.

Using the hook length formula for dim(Vλ), we get

x(λ) =

∏
i,j∈λ h(i, j)∏
j λj

∏
i λ
∗
i

,

where λj is the number of boxes in the jth row of the Young diagram of λ, λ∗i – the number of boxes in the ith
column, and h(i, j) – the length of the hook starting at the square (i, j).

(b) First, notice that C is central: gCg−1 =
∑
i<j g(i, j)g−1 =

∑
i<j(g(i), g(j)) = C. Therefore, C acts on Vλ by a

scalar, and we have C · cλ = z(λ)cλ. Then C · cλ = Caλbλ = aλCbλ. We have:

aλ(i, j)bλ =

{
aλbλ = cλ, if (i, j) ∈ Pλ
−aλbλ = −cλ, if (i, j) ∈ Qλ

If (i, j) /∈ Pλ ∪ Qλ, then i and j are in different rows and different columns of the Young diagram. Suppose i is
in the longest of the two rows. Then there is a transposition in Pλ, (i, s), that moves i to the column of j, and
(i, j)(i, s)(i, j) = (j, s) ∈ Qλ. Then, similarly to the proof we did in class, we have

aλ(i, j)bλ = aλ(i, s)(i, j)bλ = aλ(i, j)(j, s)bλ = −aλ(i, j)bλ = 0.

So the value of z(λ) is the number of all transpositions in Pλ minus the number of all transpositions in Qλ. This
number is

z(λ) =

p∑
j=1

λj∑
i=1

(i− 1)−
p∑
j=1

λj · (j − 1) =

p∑
j=1

λj∑
i=1

(i− 1)−
p∑
j=1

λj∑
i=1

(j − 1) =

p∑
j=1

λj∑
i=1

(i− j).



Exercise 2. Let G = SL(2,Fq) be the group of 2 × 2 matrices of determinant 1 with coefficients in the field of q
elements Fq (q ≥ 3 a prime). Consider the 2-dimensional Fq-vector space V with the basis e1 = (1, 0) and e2 = (0, 1).

(a) Find the order of G.

(b) Show that G acts transitively on V \ {(0, 0)}.

(c) Find the stabilizer N ⊂ G of e1.

(d) Show that the representation (F, ρ) of G in the complex vector space F of functions f : V \ {(0, 0)} → C given by

ρ

(
a b
c d

)
· f(x, y) = f(dx− by,−cx+ ay)

is isomorphic to the induced representation of G from the trivial representation of N .

(e) Use Frobenius reciprocity to deduce that ρ is not irreducible.

Solution 2. (a) The condition ad−bc = 1 means that if a 6= 0, then d is uniquely determined with any values of b and
c, and if a = 0, then b and c have to be nonzero. In the first case, we have (q−1)q2 possibilities, and in the second,
q(q−1), q choices for d and (q−1) for b. Totally, the order of G is (q−1)q2 +q(q−1) = (q−1)(q2 +q) = q(q2−1).

Another way to look at it is to first compute the order of the group of invertible matrices GL(2,Fq). To be
invertible, the columns have to be linearly independent. So we have q2 − 1 choices for the first column (it has to
be nonzero) and q2 − q choices for the second column that cannot be a multiple of the first. Then the order of
GL(2,Fq) is (q2 − 1)(q2 − 2). Now consider the group homomorphism det : GL(2,Fq) → (Fq)∗. The kernel is by
definition isomorphic to SL(2,Fq). Since the order of the image is (q − 1), we get the order of SL(2,Fq) equal to
(q2 − 1)(q2 − q)/(q − 1) = q(q2 − 1) as before.

(b) This amounts to checking that any vector (x, y) can be transformed into, say, (0, 1) by the action of G. We have(
a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
=

(
0
1

)
.

With the condition ad − bc = 1, if y 6= 0, then a = y, b = −x, d = 1+bc
a . If y = 0, set a = 0, b = −x, c = 1

x , and
d is arbitrary. The inverse matrix then will map (0, 1) to any given vector (x, y). Therefore, the action of G on
V \ {0} is transitive.

(c) By direct computation, the stabilizer of e1 = (1, 0) is

N =

(
1 b
0 1

)
,

where b ∈ Fq is arbitrary. Check by the orbit-stabilizer theorem, knowing from (b) that the orbit of any vector is
V \ {0}:

|N | · |Orb(e1)| = |N | · |V \ {0}| = q · (q2 − 1)) = q(q2 − 1) = |G|.
The order of V \ {0} is given by all 2-vectors except the zero vector.

(d) Let F denote the given representation of G. Since G acts transitively on V \{0}, we can represent obtain any vector
(x, y)T as the result of action of an element g ∈ G on e1: (x, y)T = g−1e1. Let V0 be the trivial representation of
N and consider the map Φ : IndGNV0 → F defined by

Φ(f)(x, y) = Φ(f)(g−1e1) = f(g).

Then it is a G- homomorphism. Let t ∈ G, then

Φ(tf)(x, y) = Φ(tf)(g−1e1) = tf(g) = f(gt) = Φ(f)((gt)−1e1) = Φ(f)(t−1g−1e1) =

= tΦ(f)(g−1e1) = tΦ(f)(x, y).

Here we used that the action of t ∈ G of a function Φ(f) ∈ F is by tΦ(f)(x, y) = Φ(f)(t−1(x, y)).

If Φ(f)(V \ {0}) = 0, then f(G) = 0, so the kernel of Φ is trivial. Characteristic functions of the elements in
V \{0} form a basis of F . The representation IndGNV0 has dimension |G|/|N |, which equals to |Orb(e1)| = |V \{0}|
by (c). Therefore, Φ is an isomorphism of representations of G.



(e) Let W0 be the trivial representation of G. Frobenius reciprocity shows that the multiplicity of the trivial repre-
sentation of G in IndGN is 1:

HomG(W0, IndGNV0) = HomN (ResGN (W0), V0) = HomN (V0, V0) = 1.

This is a general result: an induction from a trivial representation of a subgroup always contains the trivial
representation of the group as a subrepresentation. In this particular case, the trivial subrepresentation corresponds
to the subspace of constant functions on V \ {0}.

Exercise 3. Let K ⊂ G be a subgroup, and Cχ a one-dimensional representation of K with character χ : K → C?.
Consider the central idempotent corresponding to χ:

eχ =
1

|K|
∑
g∈K

χ(g)−1g ∈ C[K].

Show that the induced representation IndG
KCχ is naturally isomorphic to C[G]eχ, with the action of G in C[G]eχ by

left multiplication.

Solution 3. Let k ∈ K, and {xi} ∈ G, i = 1, . . . , |G/K| be the representatives of the left cosets G/K. Then

keχ =
1

|K|
∑
g∈K

χ(g)−1kg =
1

|K|
∑
t∈K

χ(k−1t)−1t = χ(k)eχ.

Any element of G can be written uniquely as g = xik for some xi ∈ G/K and some k ∈ K. Then

C[xikeχ] = C[χ(k)xieχ] = C[xieχ].

The elements {xieχ}, i = 1, . . . |G/K| form a basis in C[G]eχ. Similarly, the elements {xi ⊗C[K] Cχ}, i = 1, . . . |G/K|
form a basis in

IndG
KCχ ' C[G]⊗C[K] Cχ.

Then map Φ : C[G]⊗C[K] Cχ → C[G]eχ given by Φ(g ⊗C[K] Cχ) = geχ for any g ∈ G sends the basis to the basis and
commutes with the action of G: if g1g = xjk for some xj and some k ∈ K, then

Φ(g1g ⊗C[K] Cχ) = Φ(xjk ⊗C[K] Cχ) = χ(k)Φ(xj ⊗C[K] Cχ) = χ(k)xjeχ =

= xjkeχ = g1geχ = g1Φ(g ⊗C[K] Cχ).


