December 10, 2024

Problem Set 12 Solutions

Exercise 1. Recall that an irreducible Specht module V_{λ} for S_n is determined by a partition $\lambda = (\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \ldots \ge \lambda_p)$, such that $\sum_{i=1}^p \lambda_i = n$. It can be defined by $V(\lambda) = \mathbb{C}[S_n]c_{\lambda}$, where $c_{\lambda} = a_{\lambda}b_{\lambda}$ with

$$a_{\lambda} = \frac{1}{|P_{\lambda}|} \sum_{g \in P_{\lambda}} g; \quad b_{\lambda} = \frac{1}{|Q_{\lambda}|} \sum_{g \in Q_{\lambda}} (-1)^g g.$$

Here the subgroups $P_{\lambda} \in S_n$ and $Q_{\lambda} \in S_n$ are the stabilizers respectively of rows and columns of a Young tableau T_{λ} of shape λ .

- (a) In class we showed that $c_{\lambda}^2 = x(\lambda)c_{\lambda}$, where $x(\lambda) \in \mathbb{Q}$ is a coefficient. Find $x(\lambda)$. Hint: Consider the action of c_{λ} in the regular representation of S_n .
- (b) Let $C = \sum_{i < j} (ij) \in \mathbb{C}[S_n]$ be the sum of all transpositions. Show that C acts on the Specht module V_{λ} by multiplication by the scalar $z(\lambda) = \sum_{j=1}^{p} \sum_{i=1}^{\lambda_j} (i-j)$. (The integer $z(\lambda)$ is called the *content* of the Young diagram of shape λ .)

Exercise 2. Let $G = SL(2, \mathbb{F}_q)$ be the group of 2×2 matrices of determinant 1 with coefficients in the field of q elements \mathbb{F}_q ($q \ge 3$ a prime). Consider the 2-dimensional \mathbb{F}_q -vector space V with the basis $e_1 = (1,0)$ and $e_2 = (0,1)$.

- (a) Find the order of G.
- (b) Show that G acts transitively on $V \setminus \{(0,0)\}$.
- (c) Find the stabilizer $N \subset G$ of e_1 .
- (d) Show that the representation (F, ρ) of G in the complex vector space F of functions $f: V \setminus \{(0,0)\} \to \mathbb{C}$ given by

$$\rho \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \cdot f(x,y) = f(dx - by, -cx + ay)$$

is isomorphic to the induced representation of G from the trivial representation of N.

(e) Use Frobenius reciprocity to deduce that ρ is not irreducible.

Exercise 3. Let $K \subset G$ be a subgroup, and \mathbb{C}_{χ} a one-dimensional representation of K with character $\chi: K \to \mathbb{C}^{\star}$. Consider the central idempotent corresponding to χ :

$$e_{\chi} = \frac{1}{|K|} \sum_{g \in K} \chi(g)^{-1} g \in \mathbb{C}[K].$$

Show that the induced representation $\operatorname{Ind}_{\mathbf{K}}^{\mathbf{G}}\mathbb{C}_{\chi}$ is naturally isomorphic to $\mathbb{C}[G]e_{\chi}$, with the action of G in $\mathbb{C}[G]e_{\chi}$ by left multiplication.