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Exercise 1. (a) Let D3 = (r,s | r> = 1,s% = 1,srs = r~!) be the dihedral group of order 6. Describe the irreducible

(b)

()

(f)

complex representations of D3 and compute its character table. (Use Ex. 1, PS 6 and Ex. 1, PS 7).

Decompose pireq the left regular representation C[D3] into a direct sum or irreducible representations. Similarly,
consider the right regular representation p,req of C[Ds] by multiplication on the right and decompose it into a
direct sum of irreducible representations.

As an associative algebra C[Dj] is isomorphic to a direct sum of matrix algebras. This decomposition provides a
basis in C[Ds] given by the matrix elements {a;;}verr of End(V), which is consistent with the decomposition of
Pireg and prreq. Express this basis in terms of the basis {g}gep,-

For each irreducible V' decompose the representation puq of D3 acting on End(V) by pea(9)(f)(v) = pv(g) o
f(pv(g~1)v) as a direct sum of irreducible representations. Hint: show that V ~ V* for all irreducible V of D3
and use characters.

Consider the adjoint action of D3 on C[D3]: paa(g)(h) = ghg™t. Use (d) to decompose p,q into a direct sum of
irreducible representations.

Find the center of the algebra C[Dj].

Solution 1. (a) According to the argument in PS 7, Ex.1 there are three irreducible representations of Ds: the trivial

1-dimensional V{, the 1-dimensional sign representation Vy and the 2-dimensional irreducible representation V5
given by the symmetries of an equilateral triangle on a plane. Set & = €27/3. We have

pl) =) =1 p) =1 p =1 w6 = (] o) me=(§ )

The conjugacy classes in D3 are {(1), (r,72), (s, s7,sr%)}. The character table is given by

(1) | (r,r?) | (s,s7,57%)
Wwil 1 1 1
Vs | 1 1 -1
Vol 2 -1 0

By density theorem we have
C[D3] ~ End(Vp) ¢ End(V;) @ End(V2).

Each direct summand is a two-sided ideal in C[D3]. Each End(V;) ~ V%% where each column of End(V;) is a
subrepresentation isomorphic to V;. (see for example Ex. 4, PS 4). Therefore, we have

pl'r‘eg =~ V;) © V:e ) V2€B2~

Similarly, each End(V;) acts on itself by right multiplication and since it is a simple algebra, it decomposes into
a direct sum of irreducible representations, all isomorphic to V;, since V; is the only irreducible representation of
End(V;). For the right action, each row of the matrix of End(V;) is a subrepresentation, isomorphic to V;. So we
have
®2
Prreg :‘/0@‘/5@‘/2 .

The algebra C[Ds] is isomorphic as an associative algebra to the following direct sum of matrix algebras,
C[D3] ~ End(Vy) ® End(Vs) @ End(Vs) ~ Mat; (C) ® Mat (C) ® Mats(C).

Since we know how each matrix algebra decomposes with respect to the left and right regular action of Ds, it is easy
to compute the matrix elements. With respect to the left and right regular actions, the component corresponding



to End(Vy) is the trivial representation, given by the sum of all group elements, and for the sign representations,
the sum of group elements with their signs, where we use the isomorphism D3 ~ Ss:

End(Vp) = Span Z g, End(Vy) = Span Z e(g)g | =Span(1 417 +1r* — s — sr — sr?).
9g€Ds gES3

To find the matrix elements of End (V%) we recall from (b) that the columns and the rows of End(V5) are isomorphic
to Vo with respect to the left (resp. right) action of the generators. We can first find the eigenspace of pireq(7)
with the eigenvalue &:

rov=r-(a+br+cr®4ds+esr+ fsr®) = E(a+ br + cr® 4 ds + esr + fsr?)

therefore v = a(1 4 &r + &r?) 4+ d(s + Esr + £2sr?). In a similar way we can find the eigenvector of py,ey(r) with
eigenvalue ¢:

wer=(a +br+r?+ds+esr+ flsr?) r =& FVr+r? +d's+elsr+ fsr?).

Therefore, w = a’(1 + &%r + £2r?) + d'(s + 2sr + £sr?). To have a common eigenvector for pryc,(r) and prreq(r)
with the same eigenvalue &, we must have d = d’ = 0 and a = a’. We can take a;; = (1+ &2r + &r?), which is first
element of the matrix of End(V3). Note that the action of s swaps two basis elements of V5. Then acting by s on
the right and on the left of aq11, we obtain the next element along the first column s-a1; = ag; = (s+ E2sr + §sr2)
and along the first row ai1 - s = (s + Esr + £25r?) = ag2. Finally, the common eigenvector of pireq(r) and prreq(r)
with eigenvalue &2 is age = (1 + &7+ £272). You can check that s-ajs = ass and as; - s = agy. Finally we have the
following matrix:

_ 14+ &2r +€r2 s+ Esr+ 2512
End(V2) = ( s+ E2sr +Esr2 14 Er + 22

Notice that {>° cp. 9. > gep, €(9)9; @11, a1z, as1, aze} form a basis in C[D3]. Moreover, we have that each
endomorphism algebra is a two-sided ideal in C[Dj3].

We have xv~(g) = xv(g). Since the characters of all irreducible representations of Dj are real, each of them is
self-dual. Alternatively, we can notice from the character table that x2 = xo0, X2 = xo0 and X% = x2 + Xo + Xs-
Therefore, each V®V contains a trivial representation, and therefore V@V ~ V*®@V, and V ~ V*. Recall (Lecture
6) that for an irreducible representation V', End(V) with the action of psq is isomorphic to the representation
V ® V*. Since in our case V* ~ V', we have End(V) ~ V ® V and

End(Vp) = Vo @ Vo =Vy, End(Vi) =Vs;@V,;~V,, End(WL)=Vo@V,~VyaV,d Vs

Note that the action of the adjoint representation on C[D3] ~ End (V) ® End(V;) @End(V3) is given by the adjoint
action on each of the direct summands, computed in (d). Then we have

Pad =2 Vo d Voo Voo Voo Vo VP oV, @ Vs

Since the action of p,q on C[D3] is given by paa(g)h = ghg™!, we conclude that the center is spanned by the trivial

isotypical component of this representation. From (e) we have
Z(C[Ds]) = (paa)® = V5*°.

Therefore, the center is 3-dimensional. We also know that », - h for any conjugacy class C' C D3 is a central
element. Therefore, the center is spanned by

{1, r+7? s+sr+sr?} ={1, (123)+(132), (12)+ (23)+ (13)},

where the second presentation uses the group isomorphism D3 ~ S3. We can also notice that the traces of the
matrices in the matrix presentation of C[D3] computed in (c¢) provide another basis in the center, namely

L4+r+ridstsrt+sr?, 14+r+ri—s—sr—sr? 2—r—r2
This basis has the property that the product of any two distinct elements is zero. After a renormalization we can

have

1 1 1
61:6(1+T+T2+S+ST+ST2), 62:6(1+7’+T2*8*ST*5T2), e3:§(erfr2).

Then e;e; = §;5¢;. Central elements with this property are called the central idempotents.



Exercise 2. The purpose of this exercise is to illustrate the statements used in the proof of Burnside’s theorem (see
Lecture 9). Let G = Ay, the alternating group of 4 elements.

(a) We have proved in class that if V' is an irreducible representation of G and C' a conjugacy class in G such that
ged(|C), dim(V)) = 1, then for any g € C we have either xy(g9) = 0, or py(g) = A Idy. For each nontrivial
conjugacy class in A4 and irreducible representation satisfying the condition ged(|C|, dim(V)) = 1, find whether
g € C acts as a scalar in V or has zero character.

(b) We also proved that if G has a conjugacy class C of a prime power order, then G has a proper nontrivial normal
subgroup H defined by H = (ab™!, a,b € C) < G. Find all conjugacy classes of prime power order in A4 and
construct the corresponding normal subgroups.

Solution 2. (a) We start with the character table of A4 given for example in Lecture 8. The second line shows the
number of elements in each conjugacy class.

1| (12)(34) | (123) | (132)
IC] |1 3 4 4
Vo |1 1 1 1
Ve [T 1 e | &
Ve | 1 1 £2 3
Vi |3 -1 0 0

First note that any 1-dimensional representation of G has the property ged(|C|,dim(V)) = 1 and that any group
element acts by a nonzero scalar given by a root of unity on a 1-dimensional representation, because (py(g))™ = Id
for n = order(g). Therefore, for any C, an element g € C act by a scalar on any 1-dimensional representation.

Now consider V3 of dimension 3. We have ged(|C|,3) = 1 for C' = C(123) and C' = C{139). Looking at the character
table, in both cases we have xv, ((123)) = xv,((132)) = 0.

onsider C\12)(34) of order 3. It gives rise to the nontrivial proper normal subgroup
b) C der C(12)(34) of ord h 1 1 sub
Hy = (ab™",a,b € {(12)(34), (13)(24), (14)(23)}) = {1, (12)(34), (13)(24), (14)(23)} = K < A,

Thus we obtain the Klein subgroup which is normal in A4. Consider C(j23) of order 22. Tt gives rise to the
nontrivial proper normal subgroup

Hy = {ab™',a,b € {(123), (214), (341), (432)}) = {1, (12)(34), (13)(24), (14)(23)} = K <1 A,4.

Since the products are of the form (123)(214)~! = (13)(24), we obtain the Klein subgroup in A,. Similarly,
starting from the conjugacy class C(132) of order 22, we obtain the same Klein subgroup K <1 Ajy.

Remark In fact, because K is the only nontrivial proper normal subgroup in Ay, we can deduce without a
computation that every conjugacy class of prime power order gives rise to the same group K.

Exercise 3. Consider the group D3 = (r,s | > = 1,5% = 1,srs = r~!) and the subgroups C3 = {1,r,r%} C D3 and
Cy = {1,8} C Ds.

(a) Use the character formula for the induced representation (Lecture 10) to decompose into the irreducible components
the representation Indg:V for each irreducible representation V' of Cs.

(b) Use the Frobenius reciprocity (Lecture 10) to decompose into the irreducible components the representation
Indgjv for each irreducible representation V' of Cj.

Solution 3. (a) Let us first recall the classification of the irreducible representations of C5 = (r | 73 = 1). There are
exactly 3 inequivalent irreducible representations of the cyclic group: Vp, Ve, Vg2 where p(r) = 1,€, €2 respectively.
Consider the right cosets with respect to Cs: {01 = C31, o5 = C3s}. For g € D3, we have 0,9 = o; if and
only if g is in the conjugacy classes {(1), (r,72)}. According to the Frobenius character formula for an induced
representation Indg:f(V) we have

X@) = Y xv(zegz;").

0. 0,9d=0;

So we have for InngV where V' = Vp, Ve, Veo:

x(1) =xv(1) +xv(1) =2, x(s)=0,



the second equality follows because the action of s permutes the right Cs-cosets. If V.= 1}, we have
X(r) = xv(r) + xv(srs) = xv (1) + xv (r™") = 2.
fV =V:or V="V, we have
X(r) = xv (r) + xv(srs) = xv (1) + xv (™) =+ & = 1.

Finally we have the following characters, that we have added as extra lines in the character table of D3 (see Ex.
1 above):

(1) | (r,r?) | (s,sr,57%)
Vo 1 1 1
Vs 1 1 —1
Va 2 | -1 0
dgeVo | 2 | 2 0
IndgeVe | 2 | -1 0
Indg*Vee | 2 | —1 0

Comparing the characters, we conclude

Indgsvo ~ Vo ® Vs, Indgg’Vg o~ Indg;j’Vg ~ V.

We will use Frobenius reciprocity. The group Cy = {1, s} has two inequivalent 1-dimensional representations V;
and V;, where s acts as £1 respectively. We have xv, (1)xv.(1) =1 and xv, (1) = 1, xv.(s) = —1. Looking at the
character table for S3 ~ D3, we conclude that

XResgg’ V2<1) =2, XResgSVQ (S) =0.
XResgSVO(l) =1, XResngo (S) =1
XResggl@(l) = 17 XResgS’VS (S) = —1.

Therefore we conclude that
Resg,sz ~ V@ Vs, Resgjvo ~ Vp, Resgsvs ~ V..
Using the Frobenius reciprocity we compute
dim Homp, (V2,Indg? Vo) = dim Home, (Resg?Va, Vo) = 1;
dim Homp, (Vo, Indg? Vo) = dim Home, (Resg? Vo, Vo) = 1;

dim Homp, (Vs,Indg2Vp) = dim Home, (ResZ? Vi, V) = 0.

Therefore,
Indg Vo ~ Vo & V.
Similarly,
dim Homp, (V2,Indg?V;) = dim Home, (ResZ2 Va, Vi) = 1;
dim Homp, (Vo, Indg?V;) = dim Homg, (Res22 Vo, Vi) = 0;
dim Homp, (V;,Indg?V;) = dim Homg, (Resg2 Vi, Vi) = 1.
Therefore,

mdZ22V, ~ Vo @ V.



