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Exercise 1. (a) Let D3 = 〈r, s | r3 = 1, s2 = 1, srs = r−1〉 be the dihedral group of order 6. Describe the irreducible
complex representations of D3 and compute its character table. (Use Ex. 1, PS 6 and Ex. 1, PS 7).

(b) Decompose ρlreg the left regular representation C[D3] into a direct sum or irreducible representations. Similarly,
consider the right regular representation ρrreg of C[D3] by multiplication on the right and decompose it into a
direct sum of irreducible representations.

(c) As an associative algebra C[D3] is isomorphic to a direct sum of matrix algebras. This decomposition provides a
basis in C[D3] given by the matrix elements {aVij}V ∈Irr of End(V ), which is consistent with the decomposition of
ρlreg and ρrreg. Express this basis in terms of the basis {g}g∈D3 .

(d) For each irreducible V decompose the representation ρad of D3 acting on End(V ) by ρad(g)(f)(v) = ρV (g) ◦
f(ρV (g−1)v) as a direct sum of irreducible representations. Hint: show that V ' V ∗ for all irreducible V of D3

and use characters.

(e) Consider the adjoint action of D3 on C[D3]: ρad(g)(h) = ghg−1. Use (d) to decompose ρad into a direct sum of
irreducible representations.

(f) Find the center of the algebra C[D3].

Solution 1. (a) According to the argument in PS 7, Ex.1 there are three irreducible representations of D3: the trivial
1-dimensional V0, the 1-dimensional sign representation Vs and the 2-dimensional irreducible representation V2
given by the symmetries of an equilateral triangle on a plane. Set ξ = e2πi/3. We have

ρ0(r) = ρ0(s) = 1, ρs(r) = 1, ρs(s) = −1, ρ2(s) =

(
0 1
1 0

)
, ρ2(r) =

(
ξ 0
0 ξ−1

)
The conjugacy classes in D3 are {(1), (r, r2), (s, sr, sr2)}. The character table is given by

(1) (r, r2) (s, sr, sr2)
V0 1 1 1
Vs 1 1 −1
V2 2 −1 0

(b) By density theorem we have
C[D3] ' End(V0)⊕ End(Vs)⊕ End(V2).

Each direct summand is a two-sided ideal in C[D3]. Each End(Vi) ' V ⊕dii , where each column of End(Vi) is a
subrepresentation isomorphic to Vi. (see for example Ex. 4, PS 4). Therefore, we have

ρlreg ' V0 ⊕ Vs ⊕ V ⊕22 .

Similarly, each End(Vi) acts on itself by right multiplication and since it is a simple algebra, it decomposes into
a direct sum of irreducible representations, all isomorphic to Vi, since Vi is the only irreducible representation of
End(Vi). For the right action, each row of the matrix of End(Vi) is a subrepresentation, isomorphic to Vi. So we
have

ρrreg ' V0 ⊕ Vs ⊕ V ⊕22 .

(c) The algebra C[D3] is isomorphic as an associative algebra to the following direct sum of matrix algebras,

C[D3] ' End(V0)⊕ End(Vs)⊕ End(V2) ' Mat1(C)⊕Mat1(C)⊕Mat2(C).

Since we know how each matrix algebra decomposes with respect to the left and right regular action of D3, it is easy
to compute the matrix elements. With respect to the left and right regular actions, the component corresponding



to End(V0) is the trivial representation, given by the sum of all group elements, and for the sign representations,
the sum of group elements with their signs, where we use the isomorphism D3 ' S3:

End(V0) = Span

∑
g∈D3

g

 , End(Vs) = Span

∑
g∈S3

ε(g)g

 = Span(1 + r + r2 − s− sr − sr2).

To find the matrix elements of End(V2) we recall from (b) that the columns and the rows of End(V2) are isomorphic
to V2 with respect to the left (resp. right) action of the generators. We can first find the eigenspace of ρlreg(r)
with the eigenvalue ξ:

r · v = r · (a+ br + cr2 + ds+ esr + fsr2) = ξ(a+ br + cr2 + ds+ esr + fsr2)

therefore v = a(1 + ξ2r + ξr2) + d(s+ ξsr + ξ2sr2). In a similar way we can find the eigenvector of ρrreg(r) with
eigenvalue ξ:

w · r = (a′ + b′r + c′r2 + d′s+ e′sr + f ′sr2) · r = ξ(a′ + b′r + c′r2 + d′s+ e′sr + f ′sr2).

Therefore, w = a′(1 + ξ2r + ξ2r2) + d′(s+ ξ2sr + ξsr2). To have a common eigenvector for ρlreg(r) and ρrreg(r)
with the same eigenvalue ξ, we must have d = d′ = 0 and a = a′. We can take a11 = (1 + ξ2r+ ξr2), which is first
element of the matrix of End(V2). Note that the action of s swaps two basis elements of V2. Then acting by s on
the right and on the left of a11, we obtain the next element along the first column s · a11 = a21 = (s+ ξ2sr+ ξsr2)
and along the first row a11 · s = (s+ ξsr+ ξ2sr2) = a12. Finally, the common eigenvector of ρlreg(r) and ρrreg(r)
with eigenvalue ξ2 is a22 = (1 + ξr+ ξ2r2). You can check that s · a12 = a22 and a21 · s = a22. Finally we have the
following matrix:

End(V2) =

(
1 + ξ2r + ξr2 s+ ξsr + ξ2sr2

s+ ξ2sr + ξsr2 1 + ξr + ξ2r2

)
.

Notice that {
∑
g∈D3

g,
∑
g∈D3

ε(g)g, a11, a12, a21, a22} form a basis in C[D3]. Moreover, we have that each
endomorphism algebra is a two-sided ideal in C[D3].

(d) We have χV ∗(g) = χV (g). Since the characters of all irreducible representations of D3 are real, each of them is
self-dual. Alternatively, we can notice from the character table that χ2

0 = χ0, χ2
s = χ0 and χ2

2 = χ2 + χ0 + χs.
Therefore, each V ⊗V contains a trivial representation, and therefore V ⊗V ' V ∗⊗V , and V ' V ∗. Recall (Lecture
6) that for an irreducible representation V , End(V ) with the action of ρad is isomorphic to the representation
V ⊗ V ∗. Since in our case V ∗ ' V , we have End(V ) ' V ⊗ V and

End(V0) ' V0 ⊗ V0 ' V0, End(Vs) ' Vs ⊗ Vs ' V0, End(V2) ' V2 ⊗ V2 ' V0 ⊕ Vs ⊕ V2.

(e) Note that the action of the adjoint representation on C[D3] ' End(V0)⊕End(Vs)⊕End(V2) is given by the adjoint
action on each of the direct summands, computed in (d). Then we have

ρad ' V0 ⊕ V0 ⊕ V0 ⊕ Vs ⊕ V2 ' V ⊕30 ⊕ Vs ⊕ V2.

(f) Since the action of ρad on C[D3] is given by ρad(g)h = ghg−1, we conclude that the center is spanned by the trivial
isotypical component of this representation. From (e) we have

Z(C[D3]) ' (ρad)
G ' V ⊕30 .

Therefore, the center is 3-dimensional. We also know that
∑
h∈C h for any conjugacy class C ⊂ D3 is a central

element. Therefore, the center is spanned by

{1, r + r2, s+ sr + sr2} = {1, (123) + (132), (12) + (23) + (13)},

where the second presentation uses the group isomorphism D3 ' S3. We can also notice that the traces of the
matrices in the matrix presentation of C[D3] computed in (c) provide another basis in the center, namely

1 + r + r2 + s+ sr + sr2, 1 + r + r2 − s− sr − sr2, 2− r − r2.

This basis has the property that the product of any two distinct elements is zero. After a renormalization we can
have

e1 =
1

6
(1 + r + r2 + s+ sr + sr2), e2 =

1

6
(1 + r + r2 − s− sr − sr2), e3 =

1

3
(2− r − r2).

Then eiej = δijei. Central elements with this property are called the central idempotents.



Exercise 2. The purpose of this exercise is to illustrate the statements used in the proof of Burnside’s theorem (see
Lecture 9). Let G = A4, the alternating group of 4 elements.

(a) We have proved in class that if V is an irreducible representation of G and C a conjugacy class in G such that
gcd(|C|,dim(V )) = 1, then for any g ∈ C we have either χV (g) = 0, or ρV (g) = λ IdV . For each nontrivial
conjugacy class in A4 and irreducible representation satisfying the condition gcd(|C|,dim(V )) = 1, find whether
g ∈ C acts as a scalar in V or has zero character.

(b) We also proved that if G has a conjugacy class C of a prime power order, then G has a proper nontrivial normal
subgroup H defined by H = 〈ab−1, a, b ∈ C〉 C G. Find all conjugacy classes of prime power order in A4 and
construct the corresponding normal subgroups.

Solution 2. (a) We start with the character table of A4 given for example in Lecture 8. The second line shows the
number of elements in each conjugacy class.

1 (12)(34) (123) (132)
|C| 1 3 4 4
V0 1 1 1 1
Vξ 1 1 ξ ξ2

Vξ2 1 1 ξ2 ξ
V3 3 −1 0 0

First note that any 1-dimensional representation of G has the property gcd(|C|,dim(V )) = 1 and that any group
element acts by a nonzero scalar given by a root of unity on a 1-dimensional representation, because (ρV (g))n = Id
for n = order(g). Therefore, for any C, an element g ∈ C act by a scalar on any 1-dimensional representation.

Now consider V3 of dimension 3. We have gcd(|C|, 3) = 1 for C = C(123) and C = C(132). Looking at the character
table, in both cases we have χV3

((123)) = χV3
((132)) = 0.

(b) Consider C(12)(34) of order 3. It gives rise to the nontrivial proper normal subgroup

H1 = 〈ab−1, a, b ∈ {(12)(34), (13)(24), (14)(23)}〉 = {1, (12)(34), (13)(24), (14)(23)} = K CA4.

Thus we obtain the Klein subgroup which is normal in A4. Consider C(123) of order 22. It gives rise to the
nontrivial proper normal subgroup

H2 = 〈ab−1, a, b ∈ {(123), (214), (341), (432)}〉 = {1, (12)(34), (13)(24), (14)(23)} = K CA4.

Since the products are of the form (123)(214)−1 = (13)(24), we obtain the Klein subgroup in A4. Similarly,
starting from the conjugacy class C(132) of order 22, we obtain the same Klein subgroup K CA4.
Remark In fact, because K is the only nontrivial proper normal subgroup in A4, we can deduce without a
computation that every conjugacy class of prime power order gives rise to the same group K.

Exercise 3. Consider the group D3 = 〈r, s | r3 = 1, s2 = 1, srs = r−1〉 and the subgroups C3 = {1, r, r2} ⊂ D3 and
C2 = {1, s} ⊂ D3.

(a) Use the character formula for the induced representation (Lecture 10) to decompose into the irreducible components
the representation IndD3

C3
V for each irreducible representation V of C3.

(b) Use the Frobenius reciprocity (Lecture 10) to decompose into the irreducible components the representation
IndD3

C2
V for each irreducible representation V of C2.

Solution 3. (a) Let us first recall the classification of the irreducible representations of C3 = 〈r | r3 = 1〉. There are
exactly 3 inequivalent irreducible representations of the cyclic group: V0, Vξ, Vξ2 where ρ(r) = 1, ξ, ξ2 respectively.
Consider the right cosets with respect to C3: {σ1 = C31, σs = C3s}. For g ∈ D3, we have σig = σi if and
only if g is in the conjugacy classes {(1), (r, r2)}. According to the Frobenius character formula for an induced
representation IndD3

C3
(V ) we have

χ(g) =
∑

σi: σig=σi

χV (xσgx
−1
σ ).

So we have for IndD3

C3
V where V = V0, Vξ, Vξ2 :

χ(1) = χV (1) + χV (1) = 2, χ(s) = 0,



the second equality follows because the action of s permutes the right C3-cosets. If V = V0, we have

χ(r) = χV (r) + χV (srs) = χV (1) + χV (r−1) = 2.

If V = Vξ or V = Vξ2 , we have

χ(r) = χV (r) + χV (srs) = χV (1) + χV (r−1) = ξ + ξ2 = −1.

Finally we have the following characters, that we have added as extra lines in the character table of D3 (see Ex.
1 above):

(1) (r, r2) (s, sr, sr2)
V0 1 1 1

Vs 1 1 −1

V2 2 −1 0

IndD3

C3
V0 2 2 0

IndD3

C3
Vξ 2 −1 0

IndD3

C3
Vξ2 2 −1 0

Comparing the characters, we conclude

IndD3

C3
V0 ' V0 ⊕ Vs, IndD3

C3
Vξ ' IndD3

C3
Vξ2 ' V2.

(b) We will use Frobenius reciprocity. The group C2 = {1, s} has two inequivalent 1-dimensional representations V0
and Vs, where s acts as ±1 respectively. We have χV0

(1)χVs
(1) = 1 and χVs

(1) = 1, χVs
(s) = −1. Looking at the

character table for S3 ' D3, we conclude that

χ
Res

D3
C2
V2

(1) = 2, χ
Res

D3
C2
V2

(s) = 0.

χ
Res

D3
C2
V0

(1) = 1, χ
Res

D3
C2
V0

(s) = 1.

χ
Res

D3
C2
Vs

(1) = 1, χ
Res

D3
C2
Vs

(s) = −1.

Therefore we conclude that

ResD3

C2
V2 ' V0 ⊕ Vs, ResD3

C2
V0 ' V0, ResD3

C2
Vs ' Vs.

Using the Frobenius reciprocity we compute

dim HomD3(V2, IndD3

C2
V0) = dim HomC2(ResD3

C2
V2, V0) = 1;

dim HomD3
(V0, IndD3

C2
V0) = dim HomC2

(ResD3

C2
V0, V0) = 1;

dim HomD3
(Vs, IndD3

C2
V0) = dim HomC2

(ResD3

C2
Vs, V0) = 0.

Therefore,
IndD3

C2
V0 ' V2 ⊕ V0.

Similarly,
dim HomD3

(V2, IndD3

C2
Vs) = dim HomC2

(ResD3

C2
V2, Vs) = 1;

dim HomD3(V0, IndD3

C2
Vs) = dim HomC2(ResD3

C2
V0, Vs) = 0;

dim HomD3
(Vs, IndD3

C2
Vs) = dim HomC2

(ResD3

C2
Vs, Vs) = 1.

Therefore,
IndD3

C2
Vs ' V2 ⊕ Vs.


