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Exercise 1. (6 pts)

(a) Let (V, ρ) be the complex irreducible 2-dimensional representation of C[D3], given in the basis (e1, e2) by the

matrices (here and below ξ = e
2πi
3 ):

ρ(s) =

(
0 1
1 0

)
, ρ(r) =

(
ξ 0
0 ξ2

)
If (e1, e2) and (e′1, e

′
2) are bases in two copies of V , with the action of the generators in each copy given by the

above matrices, is e1 ⊕ e′1 a cyclic vector in V ⊕ V ? If not, find a cyclic vector in V ⊕ V .

(b) Let G be a finite group, and V be a complex irreducible 3-dimensional representation of C[G]. Which of the
following representations of C[G] are cyclic?

V ⊕ V, V ⊕ V ⊕ V, V ⊕ V ⊕ V ⊕ V, V ⊕6.

In each case explain how to construct a cyclic vector, or why such vector does not exist.

(c) If {Vi} is a finite set of (possibly repeating) complex irreducible representations of a semisimple finite dimensional
algebra A, find the necessary and sufficient condition for the representation V = ⊕iVi to be cyclic.

Solution 1. (a) We will consider the basis {u1 = e1 ⊕ e′1, u2 = e1 ⊕ e′2, u3 = e2 ⊕ e′1, u4 = e2 ⊕ e′2} in V ⊕ V . Then

u1 =


1
0
1
0

 , u2 =


1
0
0
1

 , u3 =


0
1
1
0

 , u4 =


0
1
0
1

 .

We easily compute the action of the elements of D3 in this basis:

ρ(r)(u1) = ξu1, ρ(r2)(u1) = ξ−1u1, ρ(s)(u1) = u4, ρ(rs)(u1) = ξ−1u4, ρ(r2s)(u1) = ξu4.

This implies that C[D3](u1) = SpanC{u1, u4} ⊂ V ⊕ V , a 2-dimensional subspace. Therefore, u1 ∈ V ⊕ V is not a
cyclic vector.

On the other hand, let us take u2 = e1 ⊕ e′2 ∈ V ⊕ V . For convenience we introduce another basis:

v1 =


1
0
0
0

 , v2 =


0
1
0
0

 , v3 =


0
0
1
0

 , v4 =


0
0
0
1

 .

Notice that u1 = v1 + v3, u2 = v1 + v4, u3 = v2 + v3, u4 = v2 + v4. We compute:

ρ(r)(u2) = ξv1 + ξ−1v4, ρ(r2)(u2) = ξ−1v1 + ξv4,

ρ(s)(u2) = v2 + v3, ρ(rs)(u2) = ξ−1v2 + ξv3, ρ(r2s)(u2) = ξv2 + ξ−1v3.

These vectors clearly span V ⊕ V (in fact, it is sufficient to have SpanC{ρ(1)(u2), ρ(r)(u2), ρ(s)(u2), ρ(rs)(u2)}.
Therefore, e1 ⊕ e′2 is a cyclic vector and V ⊕ V is a cyclic representation of C[D3].

(b) By Density theorem we know that ρ : C[G] → End(V ) is surjective. This means that for any set of linearly
independent vectors {v1, v2, . . . vk} in V and any set of vectors {u1, u2, . . . uk} there exist an element a ∈ C[G]
such that ρ(a) : {v1, v2 . . . vk} → {u1, u2, . . . uk}. Let V be an irreducible n-dimensional representation of C[G].
Therefore a representation V ⊕k of C[G] is cyclic if and only if k ≤ n = dim(V ) and a cyclic vector can be taken
to be

v
(1)
1 ⊕ v

(2)
2 ⊕ . . .⊕ v

(k)
k ∈ V ⊕k,

where v
(i)
i is in the i-th component of the direct sum V ⊕k and the vectors {vi}ki=1 are linearly independent. Thus

the representations V ⊕ V and V ⊕ V ⊕ V are cyclic, and the remaining two are not.



(c) We can use the property of a cyclic representation of an associative algebra A proven in PS4, Ex. 2: a representation
W of A is cyclic if and only if W ' A/I for a proper left ideal I ∈ A. Recall that left ideals in A are equivalently
subrepresentations of the left regular representation Areg on itself. Since the algebra A is semisimple, it is
isomorphic to a direct sum of matrix algebras End(V ), each decomposing into a direct sum of dim(V ) copies of
V . This follows because V is the only irreducible representation of End(V ) (see PS 4, Ex. 4). So we have for the
set {Vi} of inequivalent irreducible representations of A:

Areg '
r⊕
i=1

V
⊕dim(Vi)
i .

Any proper left ideal in I ⊂ A is a subrepresentation of the left regular representation, and therefore a direct sum
of several copies of irreducible representations of A with multiplicities of each irreducible representation smaller
than its dimension. Notice that since A is semisimple, a quotient is also a subrepresentation. Therefore for a
representation V = ⊕Vi to be cyclic, it is necessary and sufficient for the multiplicity of each direct summand to
be less of equal to its dimension.

Exercise 2. (9 pts) Let F (G,C) be the space of functions on G and define the convolution product

f1 ? f2(z) =
∑

xy=z∈G
f1(x)f2(y).

(a) Show that the convolution product in F (G,C) is associative and find the neutral element.

(b) Show that the subspace of class functions Fc(G,C) ⊂ F (G,C) is a commutative subalgebra in F (G,C).

(c) Let V and W be two irreducible representations of G. Compute χV ? χW . Hint: Write the characters in terms
of the matrix elements of the representations and use the third orthogonality relation for the matrix elements of
irreducible representations (see Lecture 7).

(d) Find the primitive idempotents in the convolution algebra Fc(G,C): the solutions of the equation f ? f = f such
that f is not a sum of other nonzero solutions. Express the primitive idempotents in the basis of irreducible
characters.

(e) Let D3 = 〈r, s | r3 = 1, s2 = 1, srs = r−1〉 be the dihedral group of order 6. Describe the irreducible complex
representations of D3 and compute its character table. Construct the set of primitive idempotents with respect
to the convolution product in the space of the class functions on D3.

Solution 2. (a) We can rewrite the convolution product as follows

f1 ? f2(z) =
∑
x∈G

f1(x)f2(x−1z).

To show that the convolution product is associative we compute

(f1 ? f2) ? f3(z) =
∑
x∈G

(f1 ? f2)(x)f3(x−1z) =
∑
x∈G

∑
t∈G

f1(t)f2(t−1x)f3(x−1z).

f1 ? (f2 ? f3)(z) =
∑
y∈G

f1(y)(f2 ? f3)(y−1z) =
∑
y∈G

∑
s∈G

f1(y)f2(s)f3(s−1y−1z).

With the change of variable x = ts in the first line and y = t in the second line, we deduce the equality. The
neutral element of the convolution product is the characteristic function of the group unit δe(z) = δe,z. For any
f ∈ F (G,C) we have

f ? δe(z) =
∑
x∈G

f(x)δe(x
−1z) =

∑
x∈G

f(x)δx,z = f(z) δe ? f(z) =
∑
x∈G

δe(x)f(x−1z) = f(z).

(b) Let now f1, f2 be class functions. Then

f1 ? f2(z) =
∑
x∈G

f1(x)f2(x−1z) =
∑
x∈G

f1(z−1xz)f2(x−1z) =
∑
y∈G

f2(y)f1(y−1z) = f2 ? f1.

Here we used the property of the class function f1(z−1xz) = f1(z) and the change of variable y = x−1z.



(c) Let n = dim(V ) and m = dim(W ). Let us compute the convolution product of two irreducible characters:

χV ? χW (z) =
∑
g∈G

χV (x)χW (x−1z) =
∑
g∈G

χV (x)

m∑
i=1

tWii (x−1z),

where tWii is the matrix element of the representation ρW . Using matrix multiplication and the definition of the
dual representation, we have

tWii (x−1z) =

m∑
k=1

tWik (x−1)tWki (z) =

m∑
k=1

tWki (x)tWki (z),

then we continue the computation

χV ? χW (z) =
∑
x∈G

n∑
j=1

tVjj(x)

m∑
i,k

tWki (x)tWki (z) =

m∑
i,k=1

n∑
j=1

tWki (z)
∑
x∈G

tVjj(x)tWki (x).

Recall the third orthogonality relation:

1

|G|
∑
g∈G

tVij(g)tWkl (g) =
1

dim(V )
δV,W δikδjl.

Therefore, we have

χV ? χW (z) =

m∑
i,k=1

n∑
j=1

tWki (z)
|G|

dim(V )
δV,W δjkδji =

|G|
dim(V )

δV,W

n∑
j=1

tVjj(z) =
|G|

dim(V )
δV,WχV (z).

(d) From (c) we can easily find a set of orthogonal idempotents. Recall that the characters {χV }V ∈Irr form a basis
in Fc(G,C). We have proven that the characters are orthogonal with respect to the convolution product. We just
need to introduce the correct normalization to get the idempotent property. We set

ψV =
dim(V )

|G|
χV .

Then {ψV }V ∈Irr is the set of primitive idempotents with respect to the convolution product. Indeed,

ψV ? ψW (g) = δV,W
(dim(V ))2

|G|2
|G|

dim(V )
χV (g) = δV,W

dim(V )

|G|
χV (g) = δV,WψV (g).

If f ? f = f ∈ Fc(G,C), then we can decompose f in the basis of {ψV }V ∈Irr, f =
∑
V ∈Irr aV ψV . Then

f ? f =
∑
V ∈Irr

a2V ψV = f =
∑
V ∈Irr

aV ψV ,

which is possible if and only if aV ∈ {0, 1}. Therefore all other solutions of the equation f ? f = f are sums of
ψV ’s.

Remark: This implies that the characters of the irreducible representations can be defined independently of the
representation theory, by finding the primitive idempotent of the convolution algebra of the class functions on the
group and renormalizing them. Notice that we can express dim(V ) in terms of the primitive idempotents:

ψV (e) =
(dim(V ))2

|G|
=⇒ dim(V ) =

√
|G|ψV (e).

Then

χV (g) =

√
|G|
ψV (e)

ψV (g)

are the characters of the irreducible representations of G. This is a way to define characters independently of the
representation theory.



(e) According to the argument in PS 7, Ex.1 there are three irreducible representations of D3: the trivial 1-dimensional
V0, the 1-dimensional sign representation Vs and the 2-dimensional irreducible representation V2 given by the
symmetries of an equilateral triangle on a plane. Set ξ = e2πi/3. We have

ρ0(r) = ρ0(s) = 1, ρs(r) = 1, ρs(s) = −1, ρ2(s) =

(
0 1
1 0

)
, ρ2(r) =

(
ξ 0
0 ξ−1

)
The conjugacy classes in D3 are {(1), (r, r2), (s, sr, sr2)}. The character table is given by

(1) (r, r2) (s, sr, sr2)
χV0 1 1 1
χVs 1 1 −1
χV2

2 −1 0

The primitive idempotents in the convolution algebra are given by ψV = dim(V )
|G| χV :

(1) (r, r2) (s, sr, sr2)
ψV0

1
6

1
6

1
6

ψVs
1
6

1
6 − 1

6

ψV2

2
3 − 1

3 0


