Representation Theory I, MATH-314 Fall 2024 Anna Lachowska

November 19, 2024
Written assignment

Exercise 1. (6 pts)

(a)

()

Let (V;p) be the complex irreducible 2-dimensional representation of C[Dj3], given in the basis (e1,e2) by the
matrices (here and below ¢ = ¢%"):

=9 0) w=(5 &)

If (e1,e2) and (e}, eh) are bases in two copies of V, with the action of the generators in each copy given by the
above matrices, is e; @ €] a cyclic vector in V @ V7 If not, find a cyclic vector in V ¢ V.

Let G be a finite group, and V be a complex irreducible 3-dimensional representation of C[G]. Which of the
following representations of C[G] are cyclic?

VeV, VeVeV, VeVeVeV, V.
In each case explain how to construct a cyclic vector, or why such vector does not exist.

If {V;} is a finite set of (possibly repeating) complex irreducible representations of a semisimple finite dimensional
algebra A, find the necessary and sufficient condition for the representation V = @,V; to be cyclic.

Solution 1. (a) We will consider the basis {u; = e; @ e}, us =e1 Peh,us =ea Bef,ugs =easdeh} in Ve V. Then

1 0 0

_ O =

Uy = Uus = Uyg =

_— o O
O~
— o

0

We easily compute the action of the elements of D3 in this basis:

p(r)(u1) = &ur,  p(r*)(ur) =& ur,  p(s)(ur) = us,  p(rs)(us) =& us,  p(r?s)(ur) = Eua.

This implies that C[Ds](u;) = Spanc{ui,us} CV @V, a 2-dimensional subspace. Therefore, u; € V@V is not a
cyclic vector.

On the other hand, let us take us = e; @ e, € V@ V. For convenience we introduce another basis:

1 0 0 0
0 1 0 0
v = 0 ’ Vg = O ’ U3 = 1 bl Vg4 = 0
0 0 0 1

Notice that uy = v1 4+ vs, us = v1 + V4, ug = V2 + v3, Uy = V2 + v4. We compute:
p(r)(uz) = §o1 + & 1o, p(r?)(ug) = € oy + Eua,

p(s)(uz) = va +vs, p(rs)(uz) = & va + s, p(r?s)(u2) = Eva + £ ug.

These vectors clearly span V @ V (in fact, it is sufficient to have Spanc{p(1)(uz2), p(r)(u2), p(s)(uz), p(rs)(uz)}.
Therefore, e; @ €, is a cyclic vector and V @ V is a cyclic representation of C[Ds].

By Density theorem we know that p : C[G] — End(V) is surjective. This means that for any set of linearly
independent vectors {v1,va,...v,} in V and any set of vectors {uy, ug,...u;} there exist an element a € C[G]
such that p(a) : {vi,ve... v} = {u1,u2,...ux}. Let V be an irreducible n-dimensional representation of C[G].
Therefore a representation V& of C[G] is cyclic if and only if k¥ < n = dim(V) and a cyclic vector can be taken
to be
vgl) @ vém D...D v](fk) c Vo

where vfl) is in the i-th component of the direct sum V®* and the vectors {v;}¥_; are linearly independent. Thus
the representations V@V and V &V @ V are cyclic, and the remaining two are not.



()

We can use the property of a cyclic representation of an associative algebra A proven in PS4, Ex. 2: a representation
W of A is cyclic if and only if W ~ A/I for a proper left ideal I € A. Recall that left ideals in A are equivalently
subrepresentations of the left regular representation A,., on itself. Since the algebra A is semisimple, it is
isomorphic to a direct sum of matrix algebras End(V'), each decomposing into a direct sum of dim(V') copies of
V. This follows because V is the only irreducible representation of End(V') (see PS 4, Ex. 4). So we have for the
set {V;} of inequivalent irreducible representations of A:

r

Areg = @ Vieadim(Vi)'

i=1

Any proper left ideal in I C A is a subrepresentation of the left regular representation, and therefore a direct sum
of several copies of irreducible representations of A with multiplicities of each irreducible representation smaller
than its dimension. Notice that since A is semisimple, a quotient is also a subrepresentation. Therefore for a
representation V = @V, to be cyclic, it is necessary and sufficient for the multiplicity of each direct summand to
be less of equal to its dimension.

Exercise 2. (9 pts) Let F'(G, C) be the space of functions on G and define the convolution product

(a)
(b)
()

(d)

()

fxf(x)= Y h

zy=z€G
Show that the convolution product in F'(G,C) is associative and find the neutral element.
Show that the subspace of class functions F.(G,C) C F(G,C) is a commutative subalgebra in F(G,C).

Let V and W be two irreducible representations of G. Compute xy * xw. Hint: Write the characters in terms
of the matrix elements of the representations and use the third orthogonality relation for the matrix elements of
irreducible representations (see Lecture 7).

Find the primitive idempotents in the convolution algebra F.(G,C): the solutions of the equation fx f = f such
that f is not a sum of other nonzero solutions. Express the primitive idempotents in the basis of irreducible
characters.

Let D3 = (r,s | r® = 1,52 = 1,srs = r~!) be the dihedral group of order 6. Describe the irreducible complex
representations of D3 and compute its character table. Construct the set of primitive idempotents with respect
to the convolution product in the space of the class functions on Ds.

Solution 2. (a) We can rewrite the convolution product as follows

(b)

fix fo(z) =) filx) '2).

zeG

To show that the convolution product is associative we compute

(fr* f2) > f3(2) = Y _(fr = fo) (@) f =Y Y At ) fs(a 2).

e CEGLEG
firx(faxf3)(z) =D L) (fax f3)(y =Y Y AW sy tz).
yeG yeG seG

With the change of variable x = ts in the first line and y = ¢ in the second line, we deduce the equality. The
neutral element of the convolution product is the characteristic function of the group unit d.(z) = J¢, .. For any
f € F(G,C) we have

Fx0e(2) =D f@)0e(@'2) = > f(@)00z = f(2) Sex f(2) =) del(x = f(2).

zeG zeG zeG

Let now f1, fo be class functions. Then
fixfo(2) =D fi(x) =Y hGETa)fa(et2) =D @) iy ) = fax S
zeG zeG yeG

Here we used the property of the class function f;(z7'z2) = fi1(2) and the change of variable y = 2~ !2.



()

Let n = dim(V') and m = dim(W). Let us compute the convolution product of two irreducible characters:
m
xv * xw(z ZXV w(zlz) = ZXV(@Z&V@_I
geG geG i=1

where thV is the matrix element of the representation py . Using matrix multiplication and the definition of the
dual representation, we have

m
Z tz tkz Z t tkz 7
k=1
then we continue the computation
m n
xvxxw(z) =Y Zt Zt D)t (2) = > Y thi(2) Y (@)t (x)
zeq j=1 ik=1j=1 €@

Recall the third orthogonality relation:

1
Zt = ——0v,woirdji.

|G| = dim(V)

Therefore, we have

m n
Xv * Xxw (2 Zzt

i,k=1j=1

(€] — v [€]
5V,W5jk5ji = W(SV,W;tjj(Z) = dim (V) Sv,wxv(z).

From (c¢) we can easily find a set of orthogonal idempotents. Recall that the characters {xv }ver form a basis
in F.(G,C). We have proven that the characters are orthogonal with respect to the convolution product. We just
need to introduce the correct normalization to get the idempotent property. We set

_dim(V)

Then {Yv }verr is the set of primitive idempotents with respect to the convolution product. Indeed,

dim(V)
G|

VY O v (6) = svaw

Yv *xYpw(g) = dv,w G dm(v)

xv(9) = dv,wdv(g).
If fxf=feF.G,C), then we can decompose f in the basis of {tv }verrr, f =D ¢ aviby. Then

frf= > abvv=Ff= > aviy,

velrr velrr

which is possible if and only if ay € {0,1}. Therefore all other solutions of the equation f x f = f are sums of
Yy’s.

Remark: This implies that the characters of the irreducible representations can be defined independently of the
representation theory, by finding the primitive idempotent of the convolution algebra of the class functions on the
group and renormalizing them. Notice that we can express dim(V) in terms of the primitive idempotents:

Py (e) = (dHTC(X))Q = dim(V) = /|Gyv (e).

Then

(€]
xv(g) = Dvle )lbv( 9)

are the characters of the irreducible representations of G. This is a way to define characters independently of the
representation theory.



(e) According to the argument in PS 7, Ex.1 there are three irreducible representations of Ds: the trivial 1-dimensional
Vo, the 1-dimensional sign representation Vy and the 2-dimensional irreducible representation V5 given by the
symmetries of an equilateral triangle on a plane. Set & = e2™/3. We have

pl) =) =1 p =1 p =1 me= (] o) mo=(§ &)

The conjugacy classes in D3 are {(1), (r,72), (s, sr, sr?)}. The character table is given by

(1) | (r,r?) | (s,sr,sr?)
Xvy | 1 1 1
Xv, | 1 1 -1
XVs 2 -1 0
The primitive idempotents in the convolution algebra are given by ¥y = diTé;(lv) XV
(1) | (r,r?) | (s,sr,51r?%)
v | 5 [ g 5
T T T
vv. | g | & ~5
bl i 3| 0




