December 2024

List of theorems

Below and at the exam all representations are supposed to be complex and finite dimensional.

Theorem 1. (PS 1) A representation of a finite group G is equivalent to a representation of the group algebra $\mathbb{C}[G]$.

Theorem 2. (Lecture 2) (Schur's lemma).

Let V_1, V_2 be representations of an algebra A. Let $\varphi: V_1 \to V_2$ be a nonzero homomorphism of representations. Then

- (a) If V_1 is irreducible, then φ is injective.
- (b) If V_1 is irreducible, then φ is surjective.
- (c) If V_1 and V_2 are irreducible representations over \mathbb{C} , then $\varphi = \lambda$ Id, where $\lambda \in \mathbb{C}^*$.

Theorem 3. (Lecture 2). Every irreducible finite dimensional representation of a commutative algebra is one-dimensional.

Theorem 4. (Lecture 3) (Maschke's theorem).

Let G be a finite group. Then every finite dimensional complex representation of G is completely reducible, meaning that it is isomorphic to a direct sum of irreducible representations. The algebra $\mathbb{C}[G]$ is semisimple.

Theorem 5. (Lecture 3) (Weyl's unitary trick).

- (a) Every finite dimensional complex representation of a finite group is unitary.
- (b) Every finite dimensional unitary representation of any group is completely reducible.

Theorem 6. (Lecture 4). Let A be an associative algebra.

- (a) If $I \subset A$ is a left ideal, then $I \subset A$ is a subrepresentation of the left regular representation, and A/I is a quotient representation.
- (b) V is cyclic if and only if $V \simeq A/I$ for some left ideal $I \subset A$.
- (c) V is irreducible if and only if every vector $v \in V$ is cyclic.
- (d) V is irreducible if and only if $V \simeq A/I_{\rm max}$ for some maximal left ideal $I_{\rm max}$.

Theorem 7. (Lecture 4) (Density lemma)

Let V_i , $1 \leq i \leq m$ be irreducible finite dimensional complex representations of an algebra A. Let $V \simeq \bigoplus_{i=1}^n V_i^{\oplus n_i}$. Suppose that $W \subset V$ is a subrepresentation. Then $W \simeq \bigoplus_{i=1}^n V_i^{\oplus r_i}$, where $r_i \leq n_i$ for all i, and the inclusion $\varphi_i : V_i^{\oplus r_i} \to V_i^{\oplus n_i}$ is given by a constant $r_i \times n_i$ matrix X_i with complex entries.

Theorem 8. (Lecture 4) (Density theorem)

Let (V, ρ) be an irreducible finite dimensional complex representation of A.

- (a) Let $\{v_1, \ldots v_n\} \subset V$ be linearly independent vectors, and let $\{w_1, \ldots w_n\} \subset V$ be any set of vectors. Then there exist $a \in A$ such that $\rho(a)v_i = w_i$ for all $1 \le i \le n$.
- (b) The map $\rho: A \to \operatorname{End}(V)$ is surjective.

Theorem 9. (PS 4) (Lecture 5) An irreducible representation of a matrix algebra $\operatorname{Mat}_n(\mathbb{C})$ is isomorphic to \mathbb{C}^n . Irreducible representations of a finite direct sum of matrix algebras $A = \bigoplus_{i \in I} \operatorname{Mat}_{n_i}(\mathbb{C})$ are $\{\mathbb{C}^{n_i}\}_{i \in I}$.

Theorem 10. (Lecture 5) (Structure theorem for finite dimensional algebras).

A finite dimensional complex algebra A has only finitely many inequivalent irreducible representations. Each irreducible representation is finite dimensional and

$$A/\operatorname{Rad}(A) \simeq \bigoplus_{i=1}^{n} \operatorname{End}(V_i),$$

where $\{V_i\}_{i=1}^n$ is a complete list of inequivalent irreducible representations of A.

Theorem 11. (Lecture 5) (Structure theorem for semisimple finite dimensional algebras). Let A be a finite dimensional complex algebra. Then

$$A$$
 is semisimple \iff $A \simeq \bigoplus_{i=1}^n \operatorname{Mat}_{n_i}(\mathbb{C}).$

Theorem 12. (Lecture 5) (Linear independence of characters). Let A be a complex associative algebra.

- (a) Characters of inequivalent irreducible finite dimensional representations of A are linearly independent.
- (b) If A is a finite dimensional semisimple algebra, then the irreducible characters form a basis in $(A/[A,A])^*$.

Theorem 13. (Lecture 6) (Linear independence of characters of a finite group)

Let G be a finite group. The characters of complex irreducible representations of G form a basis in the space of complex-valued class functions on G.

Theorem 14. (Lecture 6). Let G be a finite group. The number of isomorphism classes of irreducible representations of G equals to the number of conjugacy classes of G. Any finite dimensional complex representation of G is determined by its character: $\chi_V = \chi_W \iff V \simeq W$.

Theorem 15. (Lecture 6). Let G be a finite group. Then $\mathbb{C}[G]$ is semisimple and

$$\mathbb{C}[G] \simeq \bigoplus_{i=1}^r \operatorname{End}(V_i),$$

where $\{V_i\}_{i=1}^r$ is the complete list of inequivalent irreducible representations of G, and r is the number of its conjugacy classes.

Theorem 16. (Lecture 6). Let V, W be finite dimensional complex representations of a finite group G. The character of the dual representation V^* is $\chi_{V^*}(g) = \overline{\chi_V(g)}$. The character of the tensor product $V \otimes W$ is $\chi_{V \otimes W}(g) = \chi_V(g) \cdot \chi_W(g)$.

Theorem 17. (Lecture 6) Let V, W be finite dimensional complex representations of a finite group G. Then

$$W \otimes V^* \simeq \operatorname{Hom}(V, W)$$

as a representation of G.

Theorem 18. (Lecture 7) (1st orthogonality relation).

For any finite dimensional complex representations V, W of G we have

$$(\chi_V, \chi_W) := \frac{1}{|G|} \sum_{g \in G} \chi_V(g) \overline{\chi_W(g)} = \dim \operatorname{Hom}_G(V, W).$$

If V, W are irreducible, then

$$(\chi_V, \chi_W) = \begin{cases} 1, & V \simeq W \\ 0, & V \not\simeq W \end{cases}$$

Theorem 19. (Lecture 7) (2nd orthogonality relation).

Let $g, h \in G$ and $Z_g = \{t \in G : tgt^{-1} = g\}$ the centralizer subgroup of g. Then

$$\sum_{V \in \operatorname{Irr}(G)} \chi_V(g) \overline{\chi_V(h)} = \left\{ \begin{array}{ll} |Z_g| & \text{if g is conjugate to h} \\ 0 & \text{otherwise} \end{array} \right.$$

Theorem 20. (Lecture 7) (3rd orthogonality relation).

(a) Matrix elements of inequivalent irreducible representations of G are orthogonal under the form $(f_1, f_2) = \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)}$.

(b)
$$(t_{ij}^V, t_{kl}^V) = \delta_{i,k} \delta_{j,l} \frac{1}{\dim(V)}.$$

Theorem 21. (Lecture 8) (Symmetric and exterior product of vector spaces).

- (a) Let $\{e_i\}_{i=1}^k$ be a basis in V. Then S^nV has a basis $\{e_{i_1}e_{i_2}\dots e_{i_n}\}_{1\leq i_1\leq i_2\leq \dots \leq i_n\leq k}$ and $\dim(S^nV)=\binom{n+k-1}{n}$.
- (b) Let $\{e_i\}_{i=1}^k$ be a basis in V. Then $\wedge^n V$ has a basis $\{e_{i_1} \wedge e_{i_2} \wedge \ldots \wedge e_{i_n}\}_{1 \leq i_1 < i_2 < \ldots < i_n \leq k}$, where $n \leq k$, and $\dim(\wedge^n V) = \binom{k}{n}$.

Theorem 22. (Lecture 8) (Action of G on $V^{\otimes n}$).

Let V be a finite dimensional complex representation of G. The action of G on $V^{\otimes n}$ commutes with the action of S_n by permutation of factors. Every S_n -isotypical component in $V^{\otimes n}$ is a subrepresentation of G in $V^{\otimes n}$.

Theorem 23. (Lecture 8) (Frobenius-Schur indicator).

Let V be an irreducible complex representation of a finite group G.

- If $V \not\simeq V^*$, then V is of complex type;
- If $V \simeq V^*$ and $V_0 \subset S^2V$, then V is of real type;
- If $V \simeq V^*$ and $V_0 \subset \wedge^2 V$, then V is of quaternionic type.

Then the number of involutions $\{g \in G : g^2 = 1\}$ equals to $\sum_{V \text{ real}} \dim(V) - \sum_{V \text{ quaternionic}} \dim(V)$.

Theorem 24. (Lecture 9)

Let G be a finite group and V a complex irreducible representation of G. Then $\dim(V)$ divides |G|.

Theorem 25. (Lecture 9)

Let V be an irreducible complex representation of a finite group G, and C a conjugacy class in G such that gcd(|C|, dim(V)) = 1. Then either $\chi_V(g) = 0 \ \forall g \in C$, or any $g \in C$ acts as a scalar in V.

Theorem 26. (Lecture 9) (Burnside's theorem).

A group of order $p^a q^b$, where p, q are primes, is solvable.

Theorem 27. (Lecture 10) (Frobenius formula for the character of an induced representation).

Let $H \subset G$ be a subgroup and $\{x_{\sigma}\}_{{\sigma} \in H \setminus G}$ representatives of right cosets of H in G. Then the character χ of $\operatorname{Ind}_H^G V$ is given by

$$\chi(g) = \sum_{\sigma \in H \setminus G : x_{\sigma}gx_{\sigma}^{-1} \in H} \chi_{V}(x_{\sigma}gx_{\sigma}^{-1}) = \frac{1}{|H|} \sum_{x \in G : xgx^{-1} \in H} \chi_{V}(xgx^{-1}).$$

Theorem 28. (Lecture 10) (Frobenius reciprocity).

Let $H \subset G$ be a subgroup, V a representation of G, W a representation of H. Then

$$\operatorname{Hom}_G(V, \operatorname{Ind}_H^G W) \simeq \operatorname{Hom}_H(\operatorname{Res}_H^G V, W).$$

Theorem 29. (Lecture 11) (Induction and restriction).

Let $H \subset G$ be a subgroup, V a representation of G, W a representation of H. Then

$$\operatorname{Ind}_H^G W \simeq \operatorname{Hom}_{\mathbb{C}[H]}(\mathbb{C}[G], W) \simeq \mathbb{C}[G] \otimes_{\mathbb{C}[H]} W.$$

$$\operatorname{Res}_H^G V \simeq \operatorname{Hom}_{\mathbb{C}[G]}(\mathbb{C}[G], V) \simeq \mathbb{C}[G] \otimes_{\mathbb{C}[G]} V.$$

Theorem 30. (PS 13). (Transitivity of the induction) Let $K \subset H \subset G$ be subgroups of a finite group G and V a complex representation of K. Then

$$\operatorname{Ind}_H^G\operatorname{Ind}_K^HV\simeq\operatorname{Ind}_K^GV.$$

Theorem 31. (Lecture 11) (Specht module for S_n).

Let $\lambda = (\lambda_1 \geq \ldots \geq \lambda_p)$ be a partition of n and Y_{λ} a Young diagram with rows λ_i filled with numbers from 1 to n. Let P_{λ} be the subgroup of permutations along the columns and Q_{λ} the subgroup of permutations along the rows of Y_{λ} . Let $a_{\lambda} = \sum_{g \in P_{\lambda}} g$, $b_{\lambda} = \sum_{g \in Q_{\lambda}} (-1)^g g$, and $c_{\lambda} = a_{\lambda} b_{\lambda}$. Then

$$V_{\lambda} = \mathbb{C}[S_n]c_{\lambda}$$

is the Specht module corresponding to the partition λ . The Specht modules $\{V_{\lambda}\}_{\lambda \text{ partition of } n}$ form the complete set of inequivalent irreducible representations of S_n .

Theorem 32. (Lecture 12).

Let A be an associative algebra and M a left A-module. Let $e \in A$ be an idempotent: $e^2 = e$. Then

$$\operatorname{Hom}_A(Ae, M) \simeq eM.$$

Theorem 33. (Lecture 12). (Induced representations of S_n)

Let λ be a partition of n and define

$$U_{\lambda} = \operatorname{Ind}_{P_{\lambda}}^{S_n} \mathbb{C}_{\operatorname{triv}} \simeq \mathbb{C}[S_n] a_{\lambda}.$$

Then $U_{\lambda} = \bigoplus_{\mu > \lambda} K_{\lambda,\mu} V_{\mu}$, where V_{μ} are the Specht modules and $K_{\lambda,\mu}$ the Kostka numbers, $K_{\lambda,\lambda} = 1$.

Theorem 34. (Lecture 12) (Character of U_{λ}).

Let $C_{\mathbf{i}}$ be the conjugacy class in S_n of cycle type $(i_1, i_2, \dots i_l, \dots)$ where i_l is the number of cycles of length l. Let $\lambda = (\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_p)$ be a partition of n. Let $N \geq p$ and $\{x_1, \dots x_N\}$ be variables. Then the character $\chi_{U_{\lambda}}(C_{\mathbf{i}})$ is equal to the coefficient of $x^{\lambda} = \prod_{i} x_i^{\lambda_j}$ in the polynomial

$$\prod_{m\geq 1} H_m(x)^{i_m}$$

where $H_m(x) = (x_1^m + x_2^m + \ldots + x_N^m).$

Theorem 35. (Lecture 12) (Character of the Specht module V_{λ}).

Let $C_{\mathbf{i}}$ be the conjugacy class in S_n of cycle type $(i_1, i_2, \dots i_l, \dots)$ where i_l is the number of cycles of length l. Let $\lambda = (\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_p)$ be a partition of n. Let $N \geq p$ and $\{x_1, \dots x_N\}$ be variables. Then the character $\chi_{U_{\lambda}}(C_{\mathbf{i}})$ is equal to the coefficient of $x^{\lambda+\rho} = \prod_j x_j^{\lambda_j+N-j}$ in the polynomial

$$\Delta(x) \prod_{m>1} H_m(x)^{i_m},$$

where

$$\Delta(x) = \prod_{1 \le i < j \le N} (x_i - x_j), \qquad H_m(x) = (x_1^m + x_2^m + \dots + x_N^m).$$

Theorem 36. (Lecture 13) (Hook length formula).

Let V_{λ} be the Specht module corresponding to the partition λ of n. Then

$$\dim V_{\lambda} = \frac{n!}{\prod_{i \in \lambda_i} h(i, j)},$$

where h(i,j) is the number of squares in the hook to the right and down from the square (i,j) in Y_{λ} .

Theorem 37. (PS 13) (Induction from S_{n-1} to S_n)

Let V_{λ} denote the Specht module for S_n , where λ is a partition of n. Then

- (a) $\operatorname{Res}_{S_{n-1}}^{S_n} V_{\lambda} \simeq \bigoplus_{\mu \in R(\lambda)} V_{\mu}$, where $R(\lambda)$ is the set of Young diagrams obtained by removing one square from Y_{λ} .
- (b) $\operatorname{Ind}_{S_{n-1}}^{S_n} V_{\mu} \simeq \bigoplus_{\lambda \in A(\mu)} V_{\lambda}$, where $A(\mu)$ is the set of Young diagrams obtained by adding one square from Y_{μ} .

Theorem 38. (Lecture 14) (Double centralizer property).

Let E be a finite dimensional complex vector space and A, B two subalgebras of $\operatorname{End}(E)$. Suppose that A is semisimple and $B = \operatorname{End}_A(E)$. Then

- (a) $A = \operatorname{End}_B(E)$ (the centralizer of the centralizer of A is A).
- (b) B is semisimple.
- (c) $E = \bigoplus_{i \in I} V_i \otimes W_i$ as a representation of $A \otimes B$, where $\{V_i\}_{i \in I}$ are all the irreducible representations of A and $\{W_i\}_{i \in I}$ are all the irreducible representations of B.

Theorem 39. (Lecture 14) (Schur-Weyl duality).

Let V be a finite dimensional complex vector space and GL(V) the group of invertible linear maps in V. Then we have

$$V^{\otimes n} \simeq \bigoplus_{\lambda} V_{\lambda} \otimes L_{\lambda},$$

where λ runs over the partitions of n, V_{λ} are the Specht modules for S_n , and $L_{\lambda} = \operatorname{Hom}_{S_n}(V_{\lambda}, V^{\otimes n})$ are distinct irreducible representations of GL(V), or zero.