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List of theorems

Below and at the exam all representations are supposed to be complex and finite dimensional.
Theorem 1. (PS 1) A representation of a finite group G is equivalent to a representation of the group algebra C[G].

Theorem 2. (Lecture 2) (Schur’s lemma).
Let V7, V5 be representations of an algebra A. Let ¢ : Vi — V5 be a nonzero homomorphism of representations. Then

(a) If V1 is irreducible, then ¢ is injective.
(b) If V is irreducible, then ¢ is surjective.
(c) If V; and V5 are irreducible representations over C, then ¢ = A Id, where A € C*.

Theorem 3. (Lecture 2). Every irreducible finite dimensional representation of a commutative algebra is one-
dimensional.

Theorem 4. (Lecture 3) (Maschke’s theorem).
Let G be a finite group. Then every finite dimensional complex representation of G is completely reducible, meaning
that it is isomorphic to a direct sum of irreducible representations. The algebra C[G] is semisimple.

Theorem 5. (Lecture 3) (Weyl’s unitary trick).

(a) Every finite dimensional complex representation of a finite group is unitary.

(b) Every finite dimensional unitary representation of any group is completely reducible.
Theorem 6. (Lecture 4). Let A be an associative algebra.

(a) If I C Ais a left ideal, then I C A is a subrepresentation of the left regular representation, and A/I is a quotient
representation.

(b) V is cyclic if and only if V'~ A/I for some left ideal I C A.
(¢) V is irreducible if and only if every vector v € V' is cyclic.
(d) V isirreducible if and only if V' ~ A/I,.x for some maximal left ideal I, ax.

Theorem 7. (Lecture 4) (Density lemma)

Let V;, 1 < i < m be irreducible finite dimensional complex representations of an algebra A. Let V ~ @?:1‘/;@”".
Suppose that W C V is a subrepresentation. Then W ~ @?le/i@m, where r; < n; for all 4, and the inclusion
i : VZ@” — Vi@m is given by a constant r; x n; matrix X; with complex entries.

Theorem 8. (Lecture 4) (Density theorem)
Let (V, p) be an irreducible finite dimensional complex representation of A.

(a) Let {v1,...v,} CV be linearly independent vectors, and let {wy,...w,} C V be any set of vectors. Then there
exist a € A such that p(a)v; = w; for all 1 <i <mn.

(b) The map p: A — End(V) is surjective.

Theorem 9. (PS 4) (Lecture 5) An irreducible representation of a matrix algebra Mat,, (C) is isomorphic to C".
Irreducible representations of a finite direct sum of matrix algebras A = @;cMat,,, (C) are {C™ },c;.

Theorem 10. (Lecture 5) (Structure theorem for finite dimensional algebras).
A finite dimensional complex algebra A has only finitely many inequivalent irreducible representations. Each irreducible
representation is finite dimensional and

A/Rad(A) ~ éEnd(W),

where {V;}_, is a complete list of inequivalent irreducible representations of A.



Theorem 11. (Lecture 5) (Structure theorem for semisimple finite dimensional algebras).
Let A be a finite dimensional complex algebra. Then

n
A is semisimple < A:@Ma‘cm(@).
i=1

Theorem 12. (Lecture 5) (Linear independence of characters).
Let A be a complex associative algebra.

(a) Characters of inequivalent irreducible finite dimensional representations of A are linearly independent.
(b) If A is a finite dimensional semisimple algebra, then the irreducible characters form a basis in (A/[A, A])*.

Theorem 13. (Lecture 6) (Linear independence of characters of a finite group)
Let G be a finite group. The characters of complex irreducible representations of G form a basis in the space of
complex-valued class functions on G.

Theorem 14. (Lecture 6). Let G be a finite group. The number of isomorphism classes of irreducible representations
of G equals to the number of conjugacy classes of G. Any finite dimensional complex representation of G is determined
by its character: xy = xw <= V ~ W.

Theorem 15. (Lecture 6). Let G be a finite group. Then C[G] is semisimple and
C[G] ~ @ End(V),
i=1

where {V;}_; is the complete list of inequivalent irreducible representations of G, and r is the number of its conjugacy
classes.

Theorem 16. (Lecture 6). Let V, W be finite dimensional complex representations of a finite group G. The character
of the dual representation V* is xy+(g) = xv(g). The character of the tensor product V@ W

is xvew(9) = xv(9) - xw(9)-

Theorem 17. (Lecture 6) Let V, W be finite dimensional complex representations of a finite group G. Then
W @ V* ~ Hom(V,W)
as a representation of G.

Theorem 18. (Lecture 7) (1st orthogonality relation).
For any finite dimensional complex representations V, W of G we have

(xv,xw) = ﬁ Z xv(9)xw(g) = dim Homg(V, W).
geG

If V,W are irreducible, then

1
(XVaXW){ 0, VAW

Theorem 19. (Lecture 7) (2nd orthogonality relation).
Let g,h € G and Z, = {t € G : tgt~! = g} the centralizer subgroup of g. Then

Z xv(g)xv(h) =

{ |Z,| if g is conjugate to h
Velrr(G)

0 otherwise

Theorem 20. (Lecture 7) (3rd orthogonality relation).

(a) Matrix elements of inequivalent irreducible representations of G are orthogonal under the form

(f1, f2) = ﬁ deg f1(9)f2(9)-
(b)

1
dim(V)’
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Theorem 21. (Lecture 8) (Symmetric and exterior product of vector spaces).

(a) Let {e;}¥_; be a basis in V. Then S™V has a basis {e;, e, . .. €i, 1< <ir<..<i, <k and dim(S"V) = ("+k_1).

n
(b) Let {e;}¥_; be a basis in V. Then A"V has a basis {e;, Aey, A... A €i, F<ii<is<..<in<k, Where n < k, and
dim(A"V) = (¥).
Theorem 22. (Lecture 8) (Action of G on V&").

Let V be a finite dimensional complex representation of G. The action of G on V®" commutes with the action of S,
by permutation of factors. Every S, -isotypical component in V" is a subrepresentation of G in V&,

Theorem 23. (Lecture 8) (Frobenius-Schur indicator).
Let V' be an irreducible complex representation of a finite group G.

o If V 2 V* then V is of complex type;
o If V~V*and Vy C S?V, then V is of real type;
o If V~V*and Vy C A2V, then V is of quaternionic type.

Then the number of involutions {g € G : g? = 1} equals to Yy, .., dim(V) dim(V).

- Z V quaternionic

Theorem 24. (Lecture 9)
Let G be a finite group and V' a complex irreducible representation of G. Then dim(V') divides |G]|.

Theorem 25. (Lecture 9)
Let V be an irreducible complex representation of a finite group G, and C' a conjugacy class in G such that
ged(|C, dim(V)) = 1. Then either xy(g) =0 Vg € C, or any g € C acts as a scalar in V.

Theorem 26. (Lecture 9) (Burnside’s theorem).
A group of order p%q®, where p, q are primes, is solvable.

Theorem 27. (Lecture 10) (Frobenius formula for the character of an induced representation).
Let H C G be a subgroup and {7, },cm\ ¢ representatives of right cosets of H in G. Then the character x of IndgV
is given by

W= Y wlen) =g Y e

0€H\G zogz; €H z€G :xgr—1€H

Theorem 28. (Lecture 10) (Frobenius reciprocity).
Let H C G be a subgroup, V a representation of G, W a representation of H. Then

Homeg (V, Ind$ W) ~ Hompy (Res$V, W).

Theorem 29. (Lecture 11) (Induction and restriction).
Let H C G be a subgroup, V a representation of G, W a representation of H. Then

Indi ~ HomC[H] ((C[G], W) ~ (C[G] QcH] w.

Res§;V ~ Homeg) (C[G], V) =~ C[G] ®cg) V-

Theorem 30. (PS 13). (Transitivity of the induction) Let K C H C G be subgroups of a finite group G and V' a
complex representation of K. Then
md% IndV ~ md%v.

Theorem 31. (Lecture 11) (Specht module for S,,).

Let A = (A > ... > ),) be a partition of n and Y, a Young diagram with rows ); filled with numbers from 1 to n.
Let Py be the subgroup of permutations along the columns and @, the subgroup of permutations along the rows of
Y. Let ay = ZQEPA g, by = deQk(fl)gg, and ¢y = axby. Then

V)\ = (C[Sn]C)\

is the Specht module corresponding to the partition A. The Specht modules {Vi}x partition of n» form the complete set
of inequivalent irreducible representations of S,.



Theorem 32. (Lecture 12).
Let A be an associative algebra and M a left A-module. Let e € A be an idempotent: e = e. Then

Hom 4 (Ae, M) ~ eM.

Theorem 33. (Lecture 12). (Induced representations of S,)
Let X\ be a partition of n and define
Ux = Ind¥} Cusiv = C[S,]an.

Then Uy = @ > KV, where V, are the Specht modules and K ,, the Kostka numbers, K » = 1.
Theorem 34. (Lecture 12) (Character of Uy).

Let C; be the conjugacy class in S, of cycle type (i1,i2,...14;,...) where i; is the number of cycles of length I. Let
A= (A1 > X2 >...>)p) be a partition of n. Let N > p and {z1,...2x} be variables. Then the character xy, (C;)

is equal to the coefficient of z* =[] j x;\J in the polynomial
H Hm(m)inz
m>1

where Hp,(z) = (7" + 25" 4+ ... + 20).

Theorem 35. (Lecture 12) (Character of the Specht module V}).
Let C; be the conjugacy class in S, of cycle type (i1,i2,...4;,...) where i; is the number of cycles of length I. Let
A= (A > A2 >...>)p) be a partition of n. Let N > p and {z1,...2n} be variables. Then the character xy, (C;)

is equal to the coefficient of 2?7 = ]_[j x?ﬁN_j in the polynomial

Ax) [T Huml2)™,

where
Az) = H (@i —xj), Hpy(z) = (@ + 20 4+ ...+ 275).
1<i<j<N

Theorem 36. (Lecture 13) (Hook length formula).
Let V) be the Specht module corresponding to the partition A of n. Then

n!
[licx, 1@, 5)°
where h(i, j) is the number of squares in the hook to the right and down from the square (¢, j) in Y.

Theorem 37. (PS 13) (Induction from S,_; to S,)
Let V) denote the Specht module for .S,,, where A is a partition of n. Then

dimV)\ =

(a) Resg:_l‘/)\ ~ P per(n) Vis Where R()) is the set of Young diagrams obtained by removing one square from Y).

(b) Indgziqu ~ @D, A(u) V2, where A(p) is the set of Young diagrams obtained by adding one square from Y,.

Theorem 38. (Lecture 14) (Double centralizer property).
Let E be a finite dimensional complex vector space and A, B two subalgebras of End(E). Suppose that A is semisimple
and B = Enda(E). Then

(a) A=Endg(E) (the centralizer of the centralizer of A is A).

(b) B is semisimple.

(c) E=@,c; Vi ® Wi as a representation of A ® B, where {V;}scr are all the irreducible representations of A and
{W;}ier are all the irreducible representations of B.

Theorem 39. (Lecture 14) (Schur-Weyl duality).
Let V be a finite dimensional complex vector space and GL(V') the group of invertible linear maps in V. Then we
have

V®n ~ @V)\ ®L)\,
A

where A\ runs over the partitions of n, V) are the Specht modules for S, and Ly = Homg, (Vy,V®™") are distinct
irreducible representations of GL(V'), or zero.



