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Below and at the exam all representations are supposed to be complex and finite dimensional.

Theorem 1. (PS 1) A representation of a finite group G is equivalent to a representation of the group algebra C[G].

Theorem 2. (Lecture 2) (Schur’s lemma).
Let V1, V2 be representations of an algebra A. Let ϕ : V1 → V2 be a nonzero homomorphism of representations. Then

(a) If V1 is irreducible, then ϕ is injective.

(b) If V1 is irreducible, then ϕ is surjective.

(c) If V1 and V2 are irreducible representations over C, then ϕ = λ Id, where λ ∈ C∗.

Theorem 3. (Lecture 2). Every irreducible finite dimensional representation of a commutative algebra is one-
dimensional.

Theorem 4. (Lecture 3) (Maschke’s theorem).
Let G be a finite group. Then every finite dimensional complex representation of G is completely reducible, meaning
that it is isomorphic to a direct sum of irreducible representations. The algebra C[G] is semisimple.

Theorem 5. (Lecture 3) (Weyl’s unitary trick).

(a) Every finite dimensional complex representation of a finite group is unitary.

(b) Every finite dimensional unitary representation of any group is completely reducible.

Theorem 6. (Lecture 4). Let A be an associative algebra.

(a) If I ⊂ A is a left ideal, then I ⊂ A is a subrepresentation of the left regular representation, and A/I is a quotient
representation.

(b) V is cyclic if and only if V ' A/I for some left ideal I ⊂ A.

(c) V is irreducible if and only if every vector v ∈ V is cyclic.

(d) V is irreducible if and only if V ' A/Imax for some maximal left ideal Imax.

Theorem 7. (Lecture 4) (Density lemma)
Let Vi, 1 ≤ i ≤ m be irreducible finite dimensional complex representations of an algebra A. Let V ' ⊕ni=1V

⊕ni
i .

Suppose that W ⊂ V is a subrepresentation. Then W ' ⊕ni=1V
⊕ri
i , where ri ≤ ni for all i, and the inclusion

ϕi : V ⊕rii → V ⊕nii is given by a constant ri × ni matrix Xi with complex entries.

Theorem 8. (Lecture 4) (Density theorem)
Let (V, ρ) be an irreducible finite dimensional complex representation of A.

(a) Let {v1, . . . vn} ⊂ V be linearly independent vectors, and let {w1, . . . wn} ⊂ V be any set of vectors. Then there
exist a ∈ A such that ρ(a)vi = wi for all 1 ≤ i ≤ n.

(b) The map ρ : A→ End(V ) is surjective.

Theorem 9. (PS 4) (Lecture 5) An irreducible representation of a matrix algebra Matn(C) is isomorphic to Cn.
Irreducible representations of a finite direct sum of matrix algebras A = ⊕i∈IMatni(C) are {Cni}i∈I .

Theorem 10. (Lecture 5) (Structure theorem for finite dimensional algebras).
A finite dimensional complex algebraA has only finitely many inequivalent irreducible representations. Each irreducible
representation is finite dimensional and

A/Rad(A) '
n⊕
i=1

End(Vi),

where {Vi}ni=1 is a complete list of inequivalent irreducible representations of A.



Theorem 11. (Lecture 5) (Structure theorem for semisimple finite dimensional algebras).
Let A be a finite dimensional complex algebra. Then

A is semisimple ⇐⇒ A '
n⊕
i=1

Matni(C).

Theorem 12. (Lecture 5) (Linear independence of characters).
Let A be a complex associative algebra.

(a) Characters of inequivalent irreducible finite dimensional representations of A are linearly independent.

(b) If A is a finite dimensional semisimple algebra, then the irreducible characters form a basis in (A/[A,A])∗.

Theorem 13. (Lecture 6) (Linear independence of characters of a finite group)
Let G be a finite group. The characters of complex irreducible representations of G form a basis in the space of
complex-valued class functions on G.

Theorem 14. (Lecture 6). Let G be a finite group. The number of isomorphism classes of irreducible representations
of G equals to the number of conjugacy classes of G. Any finite dimensional complex representation of G is determined
by its character: χV = χW ⇐⇒ V 'W .

Theorem 15. (Lecture 6). Let G be a finite group. Then C[G] is semisimple and

C[G] '
r⊕
i=1

End(Vi),

where {Vi}ri=1 is the complete list of inequivalent irreducible representations of G, and r is the number of its conjugacy
classes.

Theorem 16. (Lecture 6). Let V,W be finite dimensional complex representations of a finite group G. The character
of the dual representation V ∗ is χV ∗(g) = χV (g). The character of the tensor product V ⊗W
is χV⊗W (g) = χV (g) · χW (g).

Theorem 17. (Lecture 6) Let V,W be finite dimensional complex representations of a finite group G. Then

W ⊗ V ∗ ' Hom(V,W )

as a representation of G.

Theorem 18. (Lecture 7) (1st orthogonality relation).
For any finite dimensional complex representations V,W of G we have

(χV , χW ) :=
1

|G|
∑
g∈G

χV (g)χW (g) = dim HomG(V,W ).

If V,W are irreducible, then

(χV , χW ) =

{
1, V 'W
0, V 6'W

Theorem 19. (Lecture 7) (2nd orthogonality relation).
Let g, h ∈ G and Zg = {t ∈ G : tgt−1 = g} the centralizer subgroup of g. Then∑

V ∈Irr(G)

χV (g)χV (h) =

{
|Zg| if g is conjugate to h
0 otherwise

Theorem 20. (Lecture 7) (3rd orthogonality relation).

(a) Matrix elements of inequivalent irreducible representations of G are orthogonal under the form
(f1, f2) = 1

|G|
∑
g∈G f1(g)f2(g).

(b)

(tVij , t
V
kl) = δi,kδj,l

1

dim(V )
.



Theorem 21. (Lecture 8) (Symmetric and exterior product of vector spaces).

(a) Let {ei}ki=1 be a basis in V . Then SnV has a basis {ei1ei2 . . . ein}1≤i1≤i2≤...≤in≤k and dim(SnV ) =
(
n+k−1
n

)
.

(b) Let {ei}ki=1 be a basis in V . Then ∧nV has a basis {ei1 ∧ ei2 ∧ . . . ∧ ein}1≤i1<i2<...<in≤k, where n ≤ k, and

dim(∧nV ) =
(
k
n

)
.

Theorem 22. (Lecture 8) (Action of G on V ⊗n).
Let V be a finite dimensional complex representation of G. The action of G on V ⊗n commutes with the action of Sn
by permutation of factors. Every Sn-isotypical component in V ⊗n is a subrepresentation of G in V ⊗n.

Theorem 23. (Lecture 8) (Frobenius-Schur indicator).
Let V be an irreducible complex representation of a finite group G.

• If V 6' V ∗, then V is of complex type;

• If V ' V ∗ and V0 ⊂ S2V , then V is of real type;

• If V ' V ∗ and V0 ⊂ ∧2V , then V is of quaternionic type.

Then the number of involutions {g ∈ G : g2 = 1} equals to
∑
V real dim(V )−

∑
V quaternionic dim(V ).

Theorem 24. (Lecture 9)
Let G be a finite group and V a complex irreducible representation of G. Then dim(V ) divides |G|.

Theorem 25. (Lecture 9)
Let V be an irreducible complex representation of a finite group G, and C a conjugacy class in G such that
gcd(|C|,dim(V )) = 1. Then either χV (g) = 0 ∀g ∈ C, or any g ∈ C acts as a scalar in V .

Theorem 26. (Lecture 9) (Burnside’s theorem).
A group of order paqb, where p, q are primes, is solvable.

Theorem 27. (Lecture 10) (Frobenius formula for the character of an induced representation).
Let H ⊂ G be a subgroup and {xσ}σ∈H\G representatives of right cosets of H in G. Then the character χ of IndGHV
is given by

χ(g) =
∑

σ∈H\G :xσgx
−1
σ ∈H

χV (xσgx
−1
σ ) =

1

|H|
∑

x∈G :xgx−1∈H

χV (xgx−1).

Theorem 28. (Lecture 10) (Frobenius reciprocity).
Let H ⊂ G be a subgroup, V a representation of G, W a representation of H. Then

HomG(V, IndGHW ) ' HomH(ResGHV, W ).

Theorem 29. (Lecture 11) (Induction and restriction).
Let H ⊂ G be a subgroup, V a representation of G, W a representation of H. Then

IndGHW ' HomC[H](C[G],W ) ' C[G]⊗C[H] W.

ResGHV ' HomC[G](C[G], V ) ' C[G]⊗C[G] V.

Theorem 30. (PS 13). (Transitivity of the induction) Let K ⊂ H ⊂ G be subgroups of a finite group G and V a
complex representation of K. Then

IndGH IndHKV ' IndGKV.

Theorem 31. (Lecture 11) (Specht module for Sn).
Let λ = (λ1 ≥ . . . ≥ λp) be a partition of n and Yλ a Young diagram with rows λi filled with numbers from 1 to n.
Let Pλ be the subgroup of permutations along the columns and Qλ the subgroup of permutations along the rows of
Yλ. Let aλ =

∑
g∈Pλ g, bλ =

∑
g∈Qλ(−1)gg, and cλ = aλbλ. Then

Vλ = C[Sn]cλ

is the Specht module corresponding to the partition λ. The Specht modules {Vλ}λ partition of n form the complete set
of inequivalent irreducible representations of Sn.



Theorem 32. (Lecture 12).
Let A be an associative algebra and M a left A-module. Let e ∈ A be an idempotent: e2 = e. Then

HomA(Ae,M) ' eM.

Theorem 33. (Lecture 12). (Induced representations of Sn)
Let λ be a partition of n and define

Uλ = IndSnPλCtriv ' C[Sn]aλ.

Then Uλ = ⊕µ≥λKλ,µVµ, where Vµ are the Specht modules and Kλ,µ the Kostka numbers, Kλ,λ = 1.

Theorem 34. (Lecture 12) (Character of Uλ).
Let Ci be the conjugacy class in Sn of cycle type (i1, i2, . . . il, . . .) where il is the number of cycles of length l. Let
λ = (λ1 ≥ λ2 ≥ . . . ≥ λp) be a partition of n. Let N ≥ p and {x1, . . . xN} be variables. Then the character χUλ(Ci)

is equal to the coefficient of xλ =
∏
j x

λj
j in the polynomial∏

m≥1

Hm(x)im

where Hm(x) = (xm1 + xm2 + . . .+ xmN ).

Theorem 35. (Lecture 12) (Character of the Specht module Vλ).
Let Ci be the conjugacy class in Sn of cycle type (i1, i2, . . . il, . . .) where il is the number of cycles of length l. Let
λ = (λ1 ≥ λ2 ≥ . . . ≥ λp) be a partition of n. Let N ≥ p and {x1, . . . xN} be variables. Then the character χUλ(Ci)

is equal to the coefficient of xλ+ρ =
∏
j x

λj+N−j
j in the polynomial

∆(x)
∏
m≥1

Hm(x)im ,

where
∆(x) =

∏
1≤i<j≤N

(xi − xj), Hm(x) = (xm1 + xm2 + . . .+ xmN ).

Theorem 36. (Lecture 13) (Hook length formula).
Let Vλ be the Specht module corresponding to the partition λ of n. Then

dimVλ =
n!∏

i∈λj h(i, j)
,

where h(i, j) is the number of squares in the hook to the right and down from the square (i, j) in Yλ.

Theorem 37. (PS 13) (Induction from Sn−1 to Sn)
Let Vλ denote the Specht module for Sn, where λ is a partition of n. Then

(a) ResSnSn−1
Vλ '

⊕
µ∈R(λ) Vµ, where R(λ) is the set of Young diagrams obtained by removing one square from Yλ.

(b) IndSnSn−1
Vµ '

⊕
λ∈A(µ) Vλ, where A(µ) is the set of Young diagrams obtained by adding one square from Yµ.

Theorem 38. (Lecture 14) (Double centralizer property).
Let E be a finite dimensional complex vector space and A,B two subalgebras of End(E). Suppose that A is semisimple
and B = EndA(E). Then

(a) A = EndB(E) (the centralizer of the centralizer of A is A).

(b) B is semisimple.

(c) E =
⊕

i∈I Vi ⊗Wi as a representation of A ⊗ B, where {Vi}i∈I are all the irreducible representations of A and
{Wi}i∈I are all the irreducible representations of B.

Theorem 39. (Lecture 14) (Schur-Weyl duality).
Let V be a finite dimensional complex vector space and GL(V ) the group of invertible linear maps in V . Then we
have

V ⊗n '
⊕
λ

Vλ ⊗ Lλ,

where λ runs over the partitions of n, Vλ are the Specht modules for Sn, and Lλ = HomSn(Vλ, V
⊗n) are distinct

irreducible representations of GL(V ), or zero.


