Lecture 9.

Recall: Proposition If V is a finite dimensional representation of G over C, then the symmetric group S_n acts on $V^{\otimes n}$ by permutation of factors. This action commutes with the action $P_V^{\otimes n}$ of G on $V^{\otimes n}$. Each S_n -isotypical component in $V^{\otimes n}$ is a G-subrepresentation.

Today: algebraic in legers in representation theory.

Consequences: (1) dim V, Virreducible, divides IGI

(2) A group of order page is solvable (Burnside's theorem).

Algebraic in legers.

highest coefficient is 1

Def. $Z \in C$ is an algebraic integer if Z is a root of a monic polynomial with integer coefficients (E_X : $Z^{K-1} = O$, roots of 1).

Claim z is an algebraic integer (=> z is an eigenvalue of a matrix with integer coefficients.

Proof: Z is an eigenvalue => root of the characteristic polynomial, monic with integer coefficients.

If Z is a roof $p(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{n}x + a_{0}$, then it is a roof of the characteristic polynomial of $\begin{bmatrix} 0 & -a_{0} \\ 10 & -a_{1} \\ 1 & \vdots \end{bmatrix}$

 $\begin{array}{c|cccc}
10 & -a_1 \\
1 & & \\
1 & & \\
1 & -a_{n-1}
\end{array}$

By induction:
$$det \begin{pmatrix} \lambda & 0 & \alpha_0 \\ -1 & \lambda & \alpha_1 \\ 0 & -1 & \lambda + \alpha_2 \end{pmatrix} = \lambda^2 (\lambda + \alpha_2) + \alpha_0 + \alpha_1 \lambda = \lambda^3 + \lambda^2 \alpha_2 + \lambda \alpha_1 + \alpha_0$$

Corollary. The set of algebraic in tegers A is a ring.

Proof. Let 3 be eigenvalues of B with eigenvectors w

 $Av = \lambda v, Bw = \beta w$ Then $(A \otimes Id + Id \otimes B)(v \otimes w) = \lambda(v \otimes w) + \beta(v \otimes w) = (\lambda + \beta)(v \otimes w)$

A&B(vow) = XB(vow)

Def. Let & be an alg integer, and p(x) the minimal polynomial s.l. λ is a root of p(x). Then other roots of p(x) are called the algebraic conjugates of λ .

Claim Algebraic conjugates of 2,+2,+...+2m, di EA, are

of the form $d_1' + d_2' + ... + d_m'$, where d_i' is an alg conjugate to d_i^{-99} Proof. di is an eigenvalue of Ai => d,+dz is an eigenvalue of => Alg conjugates to (X,+X2) are eigenvalues of A, & Id + Id & A2 Eigenalues of A, & Id are v; & y; vi eigenvalues of A, y; any vector Id $\otimes A_2$ $\chi_i \otimes w_i$ $w_i - a - A_2$, χ_i any vector \Rightarrow eigenvalues are of the form $\chi_i' + \chi_2'$, where χ_i' any to χ_i any to χ_i' any to χ_i' any to χ_i' any to χ_i' any to χ_i' Proposition. $A \cap Q = Z$. $a_i \in Z$ Proof Let z be a root of $p(x) = x^{h} + q_{h-1}x^{h-1} + \dots + q_{n}x + q_{0}$ Suppose $Z = \frac{P}{g} \in \mathbb{Q}$, $gcd(p,g) = 1 \Rightarrow \frac{P^n}{g^n} + Q_{n-1} \frac{P^{n-1}}{g^{n-1}} + \dots + Q_n \frac{P}{g} + Q_0 = 0$ $P, q \in \mathbb{Z}$ $P + q a_{n-1} P^{h-1} + ... + q^{n-1} a_{i} P + q^{h} a_{0} = 0$ f(q) = g(q) + g(q) + g(q) = 0 f(q) = g(q) + g(q) + g(q) = 0 f(q) = g(q) + g(q) + g(q) = 0 f(q) = g(q) + g(q) + g(q) = 0 f(q) = g(q) + g(q) + g(q) = 0 f(q) = g(q) + g(q) + g(q) = 0 f(q) = g(q) + g(q) + g(q) = 0 f(q) = g(q) + g(q) + g(q) = 0 f(q) = g(q) + g(q) + g(q) = 0 f(q) = g(q) + g(q) + g(q) = 0 f(q) = g(q) + g(q) + g(q) + g(q) + g(q) + g(q) = 0 f(q) = g(q) + g(q

-/00-

Theorem. Let G be a finite group and Va complex irreducible representation of G. Then dim V divides /G/.

Proof. Let C be a conjular in G, and $R = \sum_{h \in C} h \in \mathbb{Z}[G]$ Then R is central in C[G].

=> Racts by a scalar in an irreducible V., $\mathcal{E}_{V}(R) = \lambda \operatorname{Id}_{V}$.

This λ is an algebraic integer: Resatisfies a monic polynomial equation in Z[G] since it satisfies the characteristic polynomial of matrix of action of R in Z[G] => monic with integer coefficients.

$$(\Gamma + \Gamma^2)^3 = 3(\Gamma + \Gamma^2) + 2 \qquad \vdots \qquad ((123) + (132))^3 = 3((123) + (132)) + 2 \in \mathbb{Z}[S_3]$$

=> \ Id aching in \ \ Jah's fies a monic polynomial equation with integer coefficients.

So λ is an algebraic integer. Taking the trace of $R = \sum h$ $|C| \times (g) = \lambda \dim V => \lambda = \frac{|C| \times (g)}{\dim V} \in A$.

Let C_i conj classes, $g_{c_i} \in C_i$

Consider $\sum_{i} \lambda_{i} \overline{\chi_{V}(g_{c_{i}})} \in A$ because: (1) $\lambda_{i} \in A$ (2) $\overline{\chi_{V}(g_{c_{i}})}$ are sums of roofs (3) A is a ring

$$\frac{\sum_{i} \lambda_{i} \sqrt{\chi_{V}(g_{ci})}}{\sqrt{\chi_{V}(g_{ci})}} = \frac{\sum_{i} \frac{|C_{i}| \chi_{V}(g_{ci})}{\sqrt{\chi_{V}(g_{ci})}}}{\sqrt{\chi_{V}(g_{ci})}} = \frac{\sum_{i} \chi_{V}(g) \sqrt{\chi_{V}(g)}}{\sqrt{\chi_{V}(g)}} = \frac{|G|}{\sqrt{\chi_{V}(\chi_{V})}} = \frac{$$

Burnside's theorem

Def. G is solvable if \exists a series of nested subgroups $\{e\}=G_1 \lhd G_2 \lhd \ldots \lhd G_n=G$ such that $G_i \lhd G_{i+1}$ is normal, and G_{i+1}/G_i is abelian.

Theorem. Any group of order page, where p, g are primes, is solvable. Proposition In particular, if $|G| = p^a$, it is solvable. Proof: Induction on a; $a = 0 = G = \langle e \rangle$, $a = 1 \Rightarrow G = C_p$ abelian If $|G|=p^a \Rightarrow class equation |G|=|Z(G)|+ \sum [G:G:]$ $:p \Rightarrow 1$ $=> |Z(G)|:p \Rightarrow |G/Z(G)|=p^b$ $G: \subseteq G$ centralizer subgroups which is solvable by induction hypothesis Proposition. 1 Let V be an irreducible representation of a finite group G and C a conjugacy class in G s.t. gcd(ICI, dim V) = 1.

 $\chi_{V}(g)\frac{|C|}{\dim V}\in A$ as before. Proof. Consider again If gcd(IC), $dimV) = 1 \Rightarrow$] a, b ∈ Z s.t. a/C/+6.dmV=1 => multiply by $\frac{\chi_{V}(g)}{\dim V}$: $\frac{a \left(C \left(\chi_{V}(g) + \frac{b \chi_{V}(g)}{\dim V} + \frac{\chi_{V}(g)}{\dim V} + \frac{\chi_{V}(g)}{\dim V} + \frac{\chi_{V}(g)}{\dim V} + \frac{\chi_{V}(g)}{\dim V} \right)}{\dim V} = \frac{\chi_{V}(g)}{\dim V} = \frac{\chi_{V}(g)}{\dim V} = \frac{\chi_{V}(g)}{\dim V}$ => Let $n = dim V \Rightarrow \frac{\chi_{V}(g)}{h} = \frac{(\mathcal{E}_{1} + \mathcal{E}_{2} + ... + \mathcal{E}_{n})}{h} = t$ where \mathcal{E}_{i} are roots of 1. If all E: are equal \Rightarrow $P_V(g) = E Id_V$ acts as a scalar. If not, |t| < 1; consider the algebraic conjugates to t: they are sums $t' = \frac{(\mathcal{E}_i' + \mathcal{E}_i' + ... + \mathcal{E}_n')}{h}$ where \mathcal{E}_i' is algorophised to \mathcal{E}_i' also roofs of unity

=> all |t'| < 1 => product of all algoning ates has the absolute value < 1 => this is the free term of the polynomial equation satisfied by t => =0 => t =0. = $\frac{\sqrt{V}(g)}{h}$ Proposition 2. Let G be a finite group and C a conjugacy class of order pk, where p is a prime and k > 0. Then G has a proper nontrivial normal subgroup.

Proof. Let $g \in C \Rightarrow g \neq 1$, $|C| = p^k$

2nd orthogonality relation => $\sum X_V(1) \cdot X_V(g) = 0$ since g is not conjugate to 1:

 $\sum_{V \in Irr} dim V \cdot \chi_{V}(g) = 0.$

Ivr G = S Vo trivial
D: V: p divides dim V
N: V: p does not divide dim V

 $\sum_{V \in Irr} \lambda_{V}(g) = \chi_{V}(g) + \sum_{V \in D} \lambda_{V}(g) + \sum_{V \in N} \lambda_{V}(g) + \sum_{V \in N} \lambda_{V}(g) = 0.$

If
$$V \in D \Rightarrow \int dmV \ \chi_{V}(g) \in A$$

$$= \lambda + pa + \sum_{V \in N} dmV \ \chi_{V}(g) = 0 \Rightarrow \sum_{V \in N} dimV \ \chi_{V}(g) \neq 0$$

Otherwise, $1 + pa = 0 \Rightarrow a = -\frac{1}{p} \in Q$, but $a \in A$, contradiction

$$= \lambda + \sum_{V \in N} dmV = \sum_{V \in N} dmV =$$

-/07-

Burnside's theorem. Any group of order page, p, g primes, is solvable.

troof! Let G be the smallest counter-example. Then G is simple: if not, it has a proper normal subgroup If G is simple => it cannot have a conjugacy class of order p^k or q^k , $k \ge 1$ by Proposition 2. => Any conj class [either [C]=1 or |C| ès divisible by pg $|G| = |Z(G)| + \Sigma|Ci| => |Z(G)|$ is divisible by pg ipq >1 ipq => Ghasa nontrivial center

=> G is not smple.