Lecture 5. Recall:

Corollary (Density theorem)

Let V be an irreducible finite dimensional representation of A over an algebraically closed field.

Then the map p: A -> End V is surjective.

Matrix algebra: (1) $V \simeq k^n$ is irreducible for $Mat_n(k)$ (it is cyclic) (2) $Mat_n(k) \simeq V^{\oplus n}$ the left regular representation.

(3) Left ideals in $Mat_n(k) \longrightarrow subrepresentations in <math>V^{\oplus n} = >$ isomorphic to $V^{\oplus r}$, $r \le n$. Maximal subrepresentation $\simeq V^{\oplus n-1}$

=> Any irreducible $\simeq Mat_n(k)/\sqrt{\oplus (n-1)} \simeq \sqrt{\oplus (n-1)} \simeq \sqrt{-}kn$ (cf [AS 4]).

loday: Structure of finite dimensional algebras

Extend the above to the case when Vis an irreducible representation of an algebra A. Then EndValso has a structure of an A-representation by left multiplication: YE End V => $Y(v) \in V$, $v \in V \Longrightarrow (a \cdot P)(v) = a \cdot P(v)$. dim V = n. Similarly to above, let I'v... vn3 be the standard basis in V Then $F: EndV \longrightarrow V^{\oplus n}$, $F(\varphi) = (\varphi(v_i), \varphi(v_i), \varphi(v_i))$ defines an isomorphism of A-representations $EndV \cong V^{\oplus n}$.

Direct sum of algebras.

Def. $A = A_1 \oplus A_2 \oplus \ldots \oplus A_n$ direct num of vector spaces in particular $1_j \in A_j$ $\forall j$. Then $1 \in A_j \Rightarrow 1 = 1_1 + 1_2 + \ldots + 1_n$ $a_i a_j = 0$ $\forall i \neq j$, $a_i \in A_i$, $a_j \in A_j$; In particular $1_i 1_j = \delta_{ij}$ A_i 's are two-sided ideals in A.

Proposition. Let $A = A_1 \oplus ... \oplus A_n$ direct sum of algebras. Any representation Vof A decomposes as a direct num $V = \bigoplus_{i=1}^{n} V_i$ of subrepresentations, where V_i is a vepresentation of A_i and A; acts by zero in Vi, i + j. If V is irreducible over $A \Rightarrow 1$; V is irreducible over A; for exactly one $i \in \{1,...n\}$, and 1; V = 0 $\forall j \neq i$. Proof: Let V be a representation of A. Then $I:V = V_i$ is a representation of $A: p(a_i)V_i = p(a_i)V = p(a_i)V = p(a_i)V$ Conversely, if Vi is a representation of Ai => V, DV2D. DVn is a representation of A by $P(a_1, a_2...a_n)(v_1...v_n) = (p_1(a_1)v_1, p_2(a_2)v_2...p_n(a_n)v_n)$

Suppose $v \in V => 1v = v = \sum_{i=1}^{n} 1_i v = \sum_{i=1}^{n} v_i$, where $v_i \in V_i$

 $1; v = \sum_{i=1}^{n} 1; 1; v = v; \Rightarrow \text{decomposition of } v = \sum_{i=1}^{n} v_i \text{ is uniquely determined.}$ $=> V = V_i \oplus V_2 \cdot \oplus V_n \text{ the sum is divect.} => V = \bigoplus_{i=1}^{n} 1; V$ $If V_i \text{ is irreducible } => J_i! \text{ i. } 1; V \neq 0 \Rightarrow 1; V = V_i = V$ $V_i \text{ irreducible over } A \iff V_i \text{ is irreducible over } A_i$ $Conversely, \text{ if } V = V_i \oplus V_j \text{ more than one summand } => \text{ we have }$ a nontrivial subrepresentation of A.

Corollary. Irreducible representations of $\bigoplus Mat_{n_i}(k)$ are $V_1 = k^{n_1}$, $V_2 = k^{n_2}$, $V_r = k^{n_r}$.

Structure of finite dimensional algebras.

Def. The radical of a finite dimensional algebra A is the set of all elements of A that act by O in all irreducible representations of A. Rad A is a two-sided nilpotent ideal [PSS]

Theorem. A finite dimensional algebra A over an algebraically closed field k has only finitely many inequivalent irreducible representations, Each irreducible representation is finite dimensional, and

 $A/Rad(A) \simeq \bigoplus_{i=1}^{n} EndV_{i}$

where $\{V_i\}_{i=1}^n$ is a complete list of inequivalent irreducible representations of A.

Proof: (1) If Va representation of A , vEV nonzero vector =>

Av CV is a subrepresentation, $\dim A < \infty =>$ every irreducible representation of A is finite dimensional. (2) {V.V2...} inequivalent irreducible representations. Then Di: A -> DEnd Vi is surjective (by an extension of density theorem). => $n \leq \sum_{i=1}^{n} dim End V_i \leq dim A =>$ there can be only finitely many inequivalent irreducible representations. (3) \(\operatorname{\operator $A/\ker(\Phi_{P_i}) \simeq \operatorname{Im}(\Phi_{P_i}) \simeq \bigoplus_{i=1}^n \operatorname{End} V_i$ $ker\left(\frac{n}{0}p_i\right) = \{x \in A : p_i(x) = 0 \mid \forall i = 1...n\} = RadA$ => $A/RadA \simeq \bigoplus_{i=1}^{n} EndV_{i}$

Corollary $\dim A = \sum_{i=1}^{n} (\dim V_i)^2 + \dim Rad A$ for a finise dimensional algebra A over k. Example. $A = C[x]/(x^n)$ $n \in \mathbb{N}$ fixed. $\{1, x, x^{n-1}\}$ basis in AIrreducible representations: $\dim V = 1 \implies \rho(x) = \lambda \in \mathbb{C}$, $\rho(x^n) = \lambda^n = 0 \implies \lambda = 0$ => unique irreducible representation V_o where $\rho(x) = 0$

 $\dim A = 1^2 + \dim RadA$ $RadA = \langle x \rangle = > \dim RadA = n-1.$

Recall: An algebra A is semisimple if every fin dimensional representation of A is completely reducible (decomposes as a direct sum of irreducible representations).

Theorem. (Structure theorem of semismuple fruite dimensional algebra). The Let A be a fruite dimensional algebra over an algebraically closed field k. Then

A is semisimple \iff A $\simeq \bigoplus_{i=1}^n Mat_{n_i}(k)$ Proof. (=>) Consider the left regular representation of A.

Proof. (=>) Consider the left regular representation of A. A is semisimple => $A = \bigoplus_{i=1}^r V_i^{\oplus n_i}$ for some irreducible V_i 's. Consider the intertwiners $Y: A \rightarrow A$ endomorphisms of A-representations $End_A A = End_A (\bigoplus_{i=1}^r V_i^{\oplus n_i})$

Schur's lemma: $Hom_{A}(V_{i}, V_{j}) = 0$, $i \neq j$ = k, i = j $= \lambda$ $A(V_{i}^{\oplus n_{i}}, V_{i}^{\oplus n_{i}}) = Mat_{n_{i}}(k)$

 $E_{X}: E_{N}d_{A}(V \oplus V)$ $= \begin{pmatrix} * & * \\ * & * \end{pmatrix}$

End $A \simeq A^{\circ P} = A$ as a vector space with opposite multiplication. $A \simeq A^{\circ P} = A$ as a vector space with opposite multiplication. $A \simeq A^{\circ P} = A$ as a vector space with opposite multiplication. $A \simeq A^{\circ P} = A$ as a vector space with opposite multiplication. $A \simeq A^{\circ P} = A$ as a vector space with opposite multiplication. $A \simeq A^{\circ P} = A$ as a vector space with opposite multiplication.

 $=>A^{\circ P} \simeq \bigoplus_{i=1}^{r} Mat_{n_{i}}(k) , \quad \left(Mat_{n_{i}}(k)\right)^{\circ P} \simeq Mat_{n_{i}}(k) \\ M \longrightarrow M^{T} , \text{ then } (AB)^{T} = B^{T}A^{T}$

 $= \rangle A = \bigoplus_{i=1}^{r} M_{\alpha} t_{n_i}(k)$

Let A =

Matn; (k) First, Matn(k) is a semisimple algebra:

Any findim representation of $Mat_n(k)$ decomposes into a direct sum of irreducible representations ($\simeq V^{\mathfrak{P}^r}$, $V \simeq k^n$). [PS5] Hint: Take $\{E_{ij}\}_{1 \leq i,j \leq n}$ a basis in $Mat_n(k)$, $1 = \sum_{i=1}^n E_{ii}$.

=> A = \(\overline{\theta}\) Matn: (k) is semisimple as a direct sum of semisimple algebras.

In particular, if A is semisimple for domensional, then RadA = 0 $A/RadA \simeq \bigoplus_{i=1}^{\infty} EndV_i, A semisimple => A \simeq \bigoplus_{i=1}^{\infty} EndV_i$

Def. A is simple z=> it is semismple and has exactly one irreducible representation => A= Matn(k) z=> A has only 0 and A as two-sided ideals.

Characters of representations.

Def. Let V be a representation of an algebra A. Then the character $X_V:A \rightarrow k$ is given by $X_{V}(a) = T_{V} p(a)$

Remark Clearly $[A,A] = \{xy-yx, x,y \in A\} \subset \ker X_T :$ $Tr_V(p(x)p(y)) = Tr_V(p(y)p(x)) \Longrightarrow X_V : A_{(A,A)} \longrightarrow k$ as a vector space

Theorem. (1) Characters of dishnot irreducible finite dimensional representations of A are linearly independent.

(2) If A is a finite dimensional semisimple algebra, then these characters $\{\chi_i\}_{i=1}^r$ form a basis in $(A/(A,A))^*$

Proof: (1) If V. Vr are inequivalent irreducible representations of A, then $\text{Pr}_{i} \oplus \text{Pr}_{i} \oplus ... \oplus \text{EndV}_{i} \oplus ... \oplus \text{EndV}_{r}$ is surjective (density theorem).

If $\sum_{i=1}^{r} \lambda_{i} \chi_{v_{i}}(a) = 0$ for all $a \in A = \sum_{i=1}^{r} \lambda_{i} \text{ tr} M_{i} = 0$ for all $M_{i} \in \text{EndV}_{i}$. In particular $\exists a \in A: P_{V_i}(a) = Id_{V_i}, P_{V_j}(a) = 0, i \neq j = >$ get lin=0 => all li=0. (to be continued ...).