Lecture 3.

Recall: Schur's lemma:

- (1) Let V_1 and V_2 be irreducible representations of an algebra A_1 and $Y: V_1 \rightarrow V_2$ a nonzero intertwiner. Then Y is an isomorphism and $V_1 \cong V_2$ as representations of A_1 .
- (2) Let V be an irreducible finite dimensional representation of A over an algebraically closed field k, and $Y:V \rightarrow V$ an intertwiner. Then $Y = \lambda Id_V$ for some $\lambda \in k$.

Today: complete reducibility for C-representations of finite groups (and related guestions)

A representation ∇ of A is completely reducible if it is isomorphic to a direct sum of irreducible representations.

 $V \simeq W_1 \oplus ... \oplus W_n$, W_i irreducible

Det An algebra A is semisimple over k if every finite dimensional representation of A over k is completely reducible

Maschke's theorem. Let G be a finite group and k a field s.t. chark does not divide 161.

Then the algebra k[G] is semisimple: If V is a finite dimensional representation of G and $W \subset V$ a subrepresentation, then there exists a subrepresentation $W' \subset V$ s.f. $V = W \oplus W'$ as representations.

Proof: Choose $\hat{W}: W \ni \hat{W} = V$ any complement and let $P: V \longrightarrow W$ as vector spaces be the projector along \hat{W} . Let $\overline{P} = \frac{1}{|G|} \sum_{g \in G} p(g) Pp(g^1)$ where $p: kiGJ \rightarrow EndV$, let $W' = ker \overline{P}$. $= > P |_{W} = Id_{W}$ if $y \in V \Longrightarrow P(y) = \frac{1}{|G|} \sum_{g \in G} p(g) P p(g^{-1}) y \in W \Longrightarrow P^{2} = P$ is a projector onto W. If z EW=kerP=> p(h)z E W' $\overline{P}_{g}(h)_{z} = \frac{1}{|G|} \sum_{g \in G} p(g) P_{g}(\overline{g}'h)_{z} = \frac{1}{|G|} \sum_{k \in G} p(hk) P_{g}(k')_{z} = p(h) \overline{P(z)} = 0$ $k'' \in G \Rightarrow k'' = g'h \quad g = hk$ g'' = k''h''

Pef. Let V be a representation of A and WCV a subrepresentation let V_W be the quotient space of W-cosets: v+W, $v\in V$.

Then V_W is a representation of A by setting p(x)(v+W) = p(w)+WIf $u\in v+W => p(x)(u+W) = p(x)(u)+W$ well defined because $p(x)(u-v)\in W$. $\forall x\in A$.

Remark. Since representations of G over k: chark does not divide |G| are completely reducible, any quotient representation V_W of G over k is also a subrepresentation: $W' \simeq V_W$ and $V \simeq W \oplus W'$.

In purficular, k[G] the left regular representation is isomorphic to a divect sum of irreducible representations of G.

Remark. If G is a finite group and chark does not divide 161,-26then any irreducible representation of G occurs as a direct summand in the left regular representation k[6]. (Exercise). Example. $A = \mathbb{C}[x]$. All irreducibles are one-dimensional by Schur. $P(x) = \lambda \in \mathbb{C}$ => ∇_{λ} pairwise non-isomorphic $\{\nabla_{\lambda}\}_{\lambda \in \mathbb{C}}$ Indecomposables? V of dim n $p(x): V \to V$ any matrix \Rightarrow classified by Jordan normal forms Indecomposables $\longrightarrow \mathcal{S}(x) = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda \end{pmatrix} = J_{n,\lambda}$ eigenvalue $\lambda \in \mathbb{C}$ Left regular representation $\mathbb{C}[x]$, and $\langle x^3 \rangle = x^3 \mathbb{C}[x] \subset \mathbb{C}[x]$ Subrepresentation
Let $V \simeq \mathbb{C}[x]/x^3 \mathbb{C}[x]$ the quotient representation $\dim V = \{1, x, x^2\}$

$$\int_{0}^{\infty} (x) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \int_{0.13}^{\infty} in decomposable$$
 The subrepresentation $\{x^2\} = W$

 $\forall rs indecomposable, W \subset V not irreducible$ => C[x] is not semisimple.

 $\mathbb{C}^2 \subset \mathbb{C}^2 \times \mathbb{Z}^2 \subset \mathbb{V}$

ivreducible indecomposables

Converse to Maschke's theorem. Let be a field and G a finite group. If any finite dimensional representation of G is completely reducible, then chark does not divide 161.

Proof. k[G] = V left regulær

Let $Y: V \rightarrow k$ linear map, Y(g) = 1 $\forall g \in G$. homomorphism $k[G] \rightarrow k$ trivial

-28-Then ker & is G-invariant (recall the proof of Schur's lemma). Suppose V-k[G] is completely reducible => V= ker 4 D U $\ker \varphi = \frac{1}{3} \frac{1}{9} \frac{1}{9$ => $\dim \mathcal{U} = 1$ => $\mathcal{U} = \{\mathcal{U}\}$ spanned by a single vector $u \in k[G]$ ckerl $u = \sum \mu_g g \Rightarrow p(x) \cdot u - u = \sum \mu_g x_g - \sum \mu_g g = \sum \mu_g (x_g - g) \in kerl \mathcal{U}$ $M_S \in k$ $\in \mathcal{U}$ $\in \mathcal{U}$ $\in \mathcal{U}$ $Coef. of 1 in u: = M, = Mx^{-1} \forall x \in G \Rightarrow u = M, \sum_{g \in G} g$ Then $\Upsilon(u) = M$, $\Upsilon(\Sigma g) = M$, $|G| \neq 0$ since $u \notin \ker \Upsilon$. $\Rightarrow |G| \neq 0$ in k.

Example
$$G = C_3 = \{t: t^3 = 1\}$$
, over F_3

 $\mathbb{F}_3\left[C_3\right]$ regular representation: in the basis $\{1,t,t^2\}$

$$p(t) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \implies -\lambda^3 + 1 = 0 \implies \lambda = 1 \text{ in } F_3 \text{ the only eigenvalue.}$$

The only eigenvector = (1)= v subrepresentation.

Find $(A-\lambda I)^2 v' = 0 \Rightarrow v' = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$; $(A-\lambda I)^3 v'' = 0 \Rightarrow v'' = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ generalized eigenvectors

= $\{v\} \subset \{v,v'\} \subset \{v,v',v''\} = V = F_3[C_3]$ indecomposable

$$p(t) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ in the basis } \{v, v', v''\}.$$

=> F₃ [C₃] is not semisimple.

Def. A representation ρ of G in a C-vector space V is unitary if V has a hermitian inner product invariant under the action of G: $\langle v, w \rangle = \langle \rho(g)v, \rho(g)w \rangle \quad \forall v, w \in V, \forall g \in G.$

Proposition. Let $p: G \to GL(V)$ be a complex representation of a finite group. Then there exists an inner product \langle , \rangle on V that is G-invariant

Proof. Let $\langle u, v \rangle = \frac{1}{|G|} \sum_{g \in G} \langle p(g)u, p(g)v \rangle_o$ is G-invariant $\langle p(L)u, p(h)v \rangle = \frac{1}{|G|} \sum_{g \in G} \langle p(hg)u, p(hg)v \rangle_o = \langle u, v \rangle_o$

=> Any C-representation of a finite group is unitary.

Theorem (Weel's unitary trick)

Finite dimensional unitary representation of any group is completely reducible.

Proof: let V be a unitary representation of G and Wa subrepresentation

Let $v \in W^{\perp}$ with the G-ivariant inner product, $\forall w \in W$. Then $\langle p(g)v, w \rangle = \langle p(g)v, p(g)p(g')w \rangle = \langle v, p(g')w \rangle = 0$

=> $p(g)v \in W^{\perp}$ for any $v \in W', g \in G$. => $W^{\perp}C$ Vis a subsepres.

=> V=W & W des G-representations.

Continuing with W and W terminates in an irreducible

decomposition, since V is finite dimensional.

Moreover, we get an orthogonal decomposition into the irreducible components.

Conclusion: Together with the result that any C-representation of a finite group is unitary, this provides an alternative proof of complete reducibility of finite dimensional complex representations of a finite group.