Lecture 2

Recall example 1:

$$a_{0}$$

 $\alpha_{i} = \frac{\alpha_{2}}{2}$ $\alpha_{0} = \frac{1}{2} \left(\alpha_{i+1} + \alpha_{i-1}\right)$

Let $f(i)_{i=0}^{n-1}$ functions on the vertices, $f(a_i) = \delta_{i}$

Let $R: f_i \rightarrow f_{i+1}$ representation of the cyclic group $C_n = \langle t, t^n = 1 \rangle$ $L: f_i \rightarrow f_{i-1} \pmod{n}$

$$\mathcal{R} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\begin{bmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$R = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \text{ in the basis } \{f_i\} \text{ ; } \det(R-\lambda I) = \lambda^n - 1 \Rightarrow \text{eigenvaluy} = \{1, 7, 7, 2, 3^{n-1}\} \}$$

$$L = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix} \text{ eigenvectors } \begin{pmatrix} 1 & 0 & 0$$

We have: $M = \frac{1}{2}(L+R)$ acting on V = filtiple =

$$Mv_{j} = \frac{1}{2}(L+R)v_{j} = \frac{1}{2}(5^{j}+5^{j})v_{j} = \cos\frac{2\pi i}{n}v_{j} \Rightarrow \qquad \forall x = \frac{2\pi}{n} \qquad -72^{-1}$$
Let $f = b_{0}v_{0} + b_{1}v_{1} + ... + b_{n}v_{n-1} = a_{0}f_{0} + a_{1}f_{1} + ... + a_{n-1}f_{n-1}$ be the starting function

$$M^{k}(F) = b_{0}v_{0} + b_{1}\cos^{k}v_{1} + b_{2}\cos^{k}v_{2} \cdot v_{2} + b_{n}(-1)^{k}v_{n} + b_{n-1}\cos^{k}(a_{1})^{k}v_{n-1} + b_{$$

Recall: Def. p: A -> End, V representation of an associative algebra algebra homomorphism Def. $S: G \rightarrow GL(V)$ representation of a group homomorphism Rep G --> Rep k[G] Subrepresentation: $W \subset V$ such that $p(a)W \subset W$ $\forall a \in A$ Irreducible representation: OCV and VCV are the only subrepres. Indecomposable representation: V 7 V, DV2 Irreducible representation is indecomposable, but the converce is false Example: $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ Jordan normal $\begin{pmatrix} \lambda & 1 \\ \lambda & 1 \end{pmatrix} = J_{n,\lambda}$ not diagonalizable

	The main questions of representation theory:	-/
	Classify the irreducible representations of A or G.	
	Classify the indecomposable representations of A or G.	
_	$xample$ Consider $D_4 = \langle S_1, S_2 : S_1^2 = 1, S_2^2 = 1, (S_1S_2)^4 = 1 \rangle$	S ₂
_		
U	mark. It is sufficient to define p (generators)	'
7	preducible representations of D_{i} ? mark. It is sufficient to define p (generators) for a group such that they satisfy the relations in G . Then extend by the homomorphism property to all elements of G . $O(g_{i}g_{2}) = O(g_{1})O(g_{2})$	A
	$\mathcal{G}(g_1g_2) = \mathcal{G}(g_1)\mathcal{G}(g_2).$	

Start with dim V=1.

 $(1) p(S_1) = \lambda_1 \quad p(S_2) = \lambda_2 \quad \text{s.t.} \quad \lambda_1^2 = \lambda_2^2 = 1 \quad (\lambda_1 \lambda_2)^4 = 1.$

$$\Rightarrow \lambda_{1,1} \lambda_2 \in \{\pm 1\} \Rightarrow 4 \text{ representations}$$

$$\int_{0}^{\infty} (S_{1}) = \int_{0}^{\infty} (S_{2}) = 1$$

$$\int_{1}^{\infty} (S_{1}) = \int_{1}^{\infty} (S_{2}) = -1$$

$$\int_{2}^{\infty} (S_{1}) = 1 \quad \int_{1}^{\infty} (S_{2}) = -1$$

 $p_3(S_1) = -1, p_3(S_2) = 1$

=>
$$p(g) = 1$$
 $\forall g \in D_4$ the trivial representation
=> $p(\overline{s_i s_1}...) = (-1)^e$ sign representation

They are all painrise non-isomorphic

$$\varphi: C \rightarrow C : \varphi = \mu \in C^*$$

$$\varphi_2(\mu S_1) = \mu \varphi_3(S_1) \Rightarrow \mu = -\mu \qquad \Rightarrow \mu = 0$$
impossible

$$P_2(\mu S_1) = \mu P_3(S_1) \Rightarrow \mu = -\mu$$

Suppose dim V = 2.

$$\rho: \mathcal{D}_{4} \to GL(\mathbb{C}^{2})$$

$$P: D_{4} \longrightarrow GL(C^{2}) : P(S_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}) P(S_{2}) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

=> no common in variant subspace => p is irreducible in \[\frac{1}{2}.

Is there another 2-dim irreducible representation?

(1) Eigenvalues for $p(s_1), p(s_2) \rightarrow \pm 1$. If the same, =) $p(s_1) = 1$ Id

or $p(s_2)$ => not reducible => must have $\binom{10}{0-1}$ for each s_1, s_2 in some basis.

 \Rightarrow det $g(s_1) = -1 = det g(s_2)$

 \Rightarrow det $p(S_1S_2)=1$

(2) Eigenvaluer of $p(S_1S_2): p(S_1S_2)'=1 \Rightarrow g \pm i, \pm i, defp(S_1S_2)=1 \Rightarrow$

=> $p(S,S_1) = \begin{pmatrix} \pm i & 0 \\ 0 & \mp i \end{pmatrix}$; $\begin{pmatrix} \pm i & 0 \\ 0 & \pm i \end{pmatrix}$; $\begin{pmatrix} \pm i$

=) eigenvalues for $p(S_iS_2)$: i and i = i (i 0) is a rotation by $\frac{tt}{2}$;

Both S, and Sz are reflections.

=> $\gamma \gamma$ to a basis change $\rho(S_1) = (0)$ $\rho(S_2) = (10)$

03 equivalent to this representation. Later we will see that (Vo, V, V2 V3, V) for D4.

Schur's lemma.

Proposition (Schur's lemma) Let V, V2 be representations of an algebra A over ceny field. Let $Y: V_1 \rightarrow V_2$ be a nonzero homomorphism of representations. Then (1) If V, is irreducible, then I is injective (2) If V_2 is irreducible, then V is surjective (3) If V_1 and V_2 are weducible, then Q is an isomorphism of irreducible representations. Proof (1) V_1 irreducible. kerl $\subseteq V_1$ is a subrepresentation: Let $v \in \ker Q \Rightarrow V(p_1(a)v) = p_2(a) V(v) = 0 \Rightarrow p_1(a)v \in \ker Q$ if $v \in \ker Q$ $a \in A$ V_1 irreducible => $\ker Y = [0]$ $[V_1 => P(V_1) = 0]$ impossible since Y_3 honzero => $\ker Y = 0$, => $Y: V_1 \to V_2$ is injective

(2) V_2 irreducible: $Im \mathcal{C} \subset V_2$ is a subrepresentation:

if $u \in Im \mathcal{C} = \exists v \in V_i : \mathcal{C}(v) = u = \mathcal{C}(a) : \mathcal{C}(v) = \mathcal{C}(v) = \mathcal{C}(v) : \mathcal{C}(v) : \mathcal{C}(v) = \mathcal{C}(v) : \mathcal{C}($

=> Im P = V2 => P is surjective.

(3) V_1, V_2 both irreducible => (1) and (2) show that ℓ is injective and surjective => isomorphism $\ell: V_1 \simeq V_2$.

Corollary. I If V1, V2 are irreducible representations of an algebra A and dim V1 + dim V2, there is no nonzero homomorphism between them.

Proof: Since k is alg closed => $Y: V \rightarrow V$ has an eigenvalue $\lambda \in k$. Then $(Y-\lambda Id): V \rightarrow V$ commutes with the action of A=> $(Y-\lambda Id)$ is an intertwiner, V is irreducible \Rightarrow By Schur's lemma or $\begin{cases} Y-\lambda Id = 0 \\ Y-\lambda Id : V \rightarrow V \text{ is cen isomorphism. impossible since } \det(Y-\lambda Id) = 0 \end{cases}$

= Y= 1 Id.

Remark. Schur's lemma over algebraically closed fields shays true for countably-dimensional representations: if V is cen irreducible countably dimensional representation, $V:V \rightarrow V$ an intertwiner $\Rightarrow V$ is a scalar operator.

Kemark. Corollary 2 fails over non-alg closed fields in general. E_{X} . A = C as an R-algebra, V = C a representation of AThen Vis irreducible, If Jazzaer is not invariant wit C-action But $Y: \mathbb{C} \to \mathbb{C}$ an intertwiner does not have to be a real multiplication: any $x \in \mathbb{C}^*$ $x: \mathbb{C} \to \mathbb{C}$ is an intertwiner. Corollary 3. Let A be a commutative algebra (G an abelian group)

over an algebraically closed field. k.

Then every fin.dim. irreducible representation over k of A (or G) is one-dimensional

Proof 1.1.

=> By Schur's lemma $p(a) = \lambda Id_V \forall a \in A \implies \text{every subspace in } V$ is $A-\text{invariant} => If Vis irreducible} => Vis 1-dimensional.$

 $\overline{E_{X}}$. Irreducible representations of $C_n = \langle t: t^n = 1 \rangle$ cyclic group.

Abelian group => all vreduibles are 1-dimensimal

=> M(p(t)1) = p(t)(M.1) => M == 3i = 3i = 3i => i = j

=> n inequivalent 1-dimensional irreducible representations. 9 73 i/i=0

Consider the regular representation $p(t) \cdot C[C_n] = t \cdot C[C_n]$ $t \cdot t^k = t^{k+l}$

 $=> \text{ in the basis} \quad \begin{cases} 1, t, t^{h-1} \end{cases} \qquad \int (f) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1$

 $= \sum \left(\int C_n \right) = \bigoplus_{i=0}^{n-1} \sqrt{3}i \quad P_i(f) = 3i$ $\lim_{n \to \infty} \sqrt{3}i$

direct sum of all irreducibles each with multiplicity 1.