Representation / heory - I Anna Lachowska All information on Moodle Math - 3/4 Lectures: Tuesday 10:15-12:00 Exercises: Tuesday 8:15-10:00

Symetries of objects - Groups

(1) Classify all groups

(2) Classify the objects they act on

Linearization

by rigid symmetries

This leads to the idea of a linear representation of a group

Instead of studying groups, study homomorphisms  $G \to GL(V)$ where V is a vector space.

Rep theory: classify the vector spaces where a group can act (linearly).

Motivatoral examples

1. , Funny example "

 $M(a_i) = \frac{1}{2}(a_{i+1} + a_{i-1})$ , indices mad n

Vector space V, functions on the vertices, basis of f.  $f_n$ :  $f_i = \delta_{ij}$ 

 $\geq V$  cyclic group acts on it:  $R: f_i \rightarrow f_{i+1}$  $L: \{i \rightarrow \{i-1\}\}$ 

operator M= { (L+R)

Idea: Study the irreducible representations of Cn given by R and L on V, decompose into the vireducible components.

2. "Real life example"

Question: Find the dimension of the space of homogeneous polynomials of degree n in two variables such that

 $\begin{cases} p(u,w) = p(u+w,-u) \\ p(u,w) = -p(w,u) \end{cases} \qquad \begin{cases} u^{h}, u^{h-r}w, \dots w^{h-r}u, w^{h} \end{cases} \simeq V \simeq C^{h+r}$ 

 $\begin{pmatrix} 1 & 1 & | & \langle u & \rangle = \langle u + w & \rangle \\ -1 & 0 & | & \langle w & \rangle = \langle u & \rangle \\ 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w & \rangle \\ 0 & 0 & 0 & | & \langle w & \rangle = \langle w &$ 

 $aba^{-1} = {0 \choose 10}{1 \choose 10}{0 \choose 10} = {0 \choose 10}{1 \choose 10} = {0 \choose 11} = {0 \choose 11} = {0 \choose 11}$ 

 $G = \langle a, b : \alpha^2 = 1, b^6 = 1, \alpha b \overline{a}' = b^{\prime\prime} \rangle = D_6$ 

 $\langle S_1, S_2 : S_1^2 = 1, S_2^2 = 1, (S_1 S_2)^6 = 1 \rangle$ 

Do C V = apply rep. theory of finite gps to this guestion

In this cours we will consider mostly representations of finite groups in finite dimensional complex vector spaces.

But we will start with a more general setting of algebras. Def An associative algebra A over a field k is a k-vector space with a bilinear map:  $A \times A \rightarrow A$  the product  $a, b \rightarrow a.b \in A$  such that (1)  $(ab) \cdot c = a(b \cdot c)$ (2)  $\exists 1 \in A : 1a = a \cdot 1 = a \forall a \in A$ .

Def. A homomorphism of algebras  $f: A \rightarrow B$  is a k-linear map s.f.  $\begin{cases} f(ab) = f(a) f(b) & \forall a, b \in A \\ f(1_A) = 1_B \end{cases}$ 

f is an isomorphism if  $\exists g: B \rightarrow A$  s.t  $f \circ g = Id_B$ ,  $g \circ f = Id_A$  (equivalently, on algebra homomorphism that is an isomorphism of vector spaces is an algebra isomorphism).

```
Examples. (1) A = k 1-dimension

(2) A = k[x, ..., x_n] polynomials in n variables \infty-dimensional
```

(3) End<sub>k</sub>V linear maps:  $V \rightarrow V = k^h$ ; End<sub>k</sub>V = Maf<sub>n</sub>(k) dim (End<sub>k</sub>V) =  $n^2$ 

(4) Free algebra  $A = k \langle x_1, x_n \rangle$ , elements: k-linear combinations of words in  $\{x_1, x_n\}$  letters

Multiplication: concafenation of words  $\infty$ -dimensional

(5) Group algebra of a finite group G. A=k[G]
elements: [\lambda\_igi, \lambda\_i \in k, gi \in G; \basis = \frac{1}{9i} \frac{3}{9i} \in G

gi \in G

Multiplication:  $g, h \rightarrow g, h$  group product. dim k[G] = |G|. Def An algebra is commutative if ab = ba  $\forall 9, b \in A$ . Examples (1), (2) are commutative, (5) => G is commutative; (3) 3 commutative => dimV = 1; (4) is commutative => n = 1  $k[X_i] = k(X_i)$ .

Def A representation of an associative algebra A is a couple (V, p) where V is a k-vector space and  $p: A \rightarrow End_k V$  is an algebra homomorphism Explicitly,  $p: A \rightarrow End_k V$ ,  $p(1) = Id_V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(b) V$ ,  $p(a \cdot b) = p(a) \cdot p(a) \cdot p(a) V$ .

Def let  $(V_1, p_1)$  and  $(V_2, p_2)$  be two representations of an algebra A. A homomorphism  $Y: V_1 \rightarrow V_2$  of representations is a linear map that commutes with the action of A.

Homomorphisms  $(V_1, \rho_1) \rightarrow (V_2, \rho_2)$  form a vector space  $Hom_A(V_1, V_2)$ . A homomorphism is an isomorphism of representations of  $J : V_2 \rightarrow V_1$ ,  $J : V_0 = id_{V_2}$ ,  $Y_0 : V_2 = id_{V_1}$ .

Def. A subrepresentation of (V, p) is a subspace WCV that is invariant under the action of A: p(a)WCW  $\forall a \in A$ .

 $\frac{E_{\text{xamples}}}{are}$ , OCV and VCV for any representation V

Def. A representation of a group G is a couple (V,p), where V is a k-vector space and  $p:G \rightarrow GL(V)$  group homomorphism  $p(1) = Id_V$   $p(g,g_2) = p(g_1)\cdot p(g_2)$ If p: G -> GL(V) is injective, the representation is faithful. Lemma [PS1] A representation of G is equivalent to a representation of the group algebra k[6]. Examples of group representations (1) Privial representation  $1:G \rightarrow GL(V):g \rightarrow Id_V + g \in G$ (2) Let G be a finite group,  $V = k[G] = vector space with boasts <math>\{g\}_{g \in G}$ . Then  $g: G \to GL(V)$ ; p(g)h = gh is a representation of Gcalled the left regular representation

More generally, if A is an algebra,  $p_{reg}: A \to End A$  by  $p(a) \cdot b = a \cdot b$   $p(a) \cdot b$ 

Def. A representation ( $\nabla_{i}p$ ) of A (or G) is irreducible if  $O \subset V$  and  $\nabla \subset V$  are the only subrepresentations.

Def Let  $(V, p_1)$  and  $(V_2, p_2)$  be two representations of A. Then  $(V, \oplus V_2, p_1 \oplus p_2)$  is also a representation of A, defined by  $p(a)(V_1 \oplus V_2) = p_1(a)V_1 \oplus p_2(a)V_2$ 

$$(V, p) = (V, p_1) O$$

$$O(V_2, p_2)$$

Det A nonzero representation (V,p) of A (or G) is indecomposable if it is not isomorphic to a direct sum of two nonzero representations.

In particular, an irreducible representation is indecomposable. The converse is false in general.