Lecture 14. Recall: representations of Sn.

(1) Complex irreducible representations of S_n are the Specht modules $\{V_{\lambda}\}_{\lambda}$ partition of n ; $V_{\lambda} = C[S_n]_{C_{\lambda}}$

(2) Character χ_{χ} (C_i) = coefficient of $\chi^{\lambda + \beta} = \prod_j \chi_j^{\lambda_j + N - j}$ in the polynomial $\chi \times \prod_j \chi_j^{im} = \chi_j^{im} =$

in the polynomial $\Delta X \prod_{m \geq 1} H_m(x)^{im}$, $\Delta (x) = \prod_{1 \leq i < j \leq N} (x_i - x_j)$

 $C_i = conj. class of type (i_1, i_2, ...ie...), i_e = # of cycles of length l.$

(3) Dimension $dim V_{\Lambda} = \frac{n!}{\prod_{i \in \lambda_{j}} h(i,j)}$, where h(i,j) is the number

of squares in the hook starting at square (i,j) in /s.

(a)
$$\operatorname{Res}_{S_{n-1}}^{S_n} V_{\Lambda} = \bigoplus_{\lambda \in R(\mu)} V_{\Lambda}$$

(4) Induction and restriction between S_{n-1} and S_n .

(a) $Res_{S_{n-1}}^{S_n} \nabla_{\mu} = \bigoplus_{\lambda \in R(\mu)} \nabla_{\lambda}$, where $R(\mu)$ is the set of Young diagrams obtained by removing one square from Y_{μ}

(b)
$$IndS_{n-1} = \bigoplus_{\lambda \in A(\mu)} V_{\lambda}$$
,

(b) $Ind_{Sn-1}^{Sn} - V_M = \bigoplus_{\chi \in A(\mu)} V_{\chi}$, where $A(\mu)$ is the set of Young diagrams obtained by adding one square to V_M .

Example.

Schur- Weyl duality

Theorem (Double centralizer)

Let A, B be two subalgebras of EndE, where E is a finite dimensional complex vector space. Suppose that A is semisimple and $B = End_AE$. Then

- (1) A = EndB E = EndEndB E (double centralizer)
- (2) B is semisimple
- (3) As a representation of $A \otimes B$, $E = \bigoplus V_i \otimes V_i$ where $\{V_i\}_{i \in I}$ are the irreducible representations of A $\{W_i\}_{i \in I}$ are the irreducible representations of B.

Proof. A semisimple => $E = \bigoplus V_i \otimes W_i$, where $W_i = Hom_i(V_i, E)$ the multiplicity space e.g. $V_i^{\oplus 3} = V_i \otimes C^3$, $W_i = C^3$ $W_i = Hom_i(V_i, E)$ here W_i is $(1 \times 3) - matrix$. from the Density thm. $B = End_{A} E = Hom_{A} \left(\bigoplus_{i \in I} V_{i} \otimes W_{i}, \bigoplus_{i \in I} V_{i} \otimes W_{i} \right) \simeq \bigoplus_{i \in I} End_{A}(W_{i}) - direct sum_{i \in I}$ $Hom_{A} \left(V_{i}, V_{j} \right) = \delta_{ij} C$ Of matrix alg.=> B is semisimple, and {WilieI is the complete set of the irreducible representations. $E_{nd} E = \mathcal{H}_{om} \left(\underbrace{\oplus V_i \otimes W_i}_{i \in I}, \underbrace{\oplus V_i \otimes W_i}_{i \in I} \right) \simeq \underbrace{\oplus}_{i \in I} E_{ncl} \left(V_i \right) = A$ and IVIII is the complete set of its irreducible representations. $= \rangle \quad E = \bigoplus_{i \in T} V_i \otimes W_i$

Idea: Apply this to $E = V^{\otimes n}$ where $A = \mathbb{C}[S_n]$ semismple acting by the permutation of factors, and $B = E_n d_A V^{\otimes n}$. Consider $End(V) = Mat_{\kappa}(C)$ $dim V = \kappa$ Introduce operation [A,B] = AB-BA. on Matk (C) End(V) = gl(V) Lie algebra [A, [B,C]] + [C, [A,B]] + [B, [G,A]] = 0Let $T(E_{ndV}) = T(gl(V))$ Let $\langle u\otimes v - v\otimes u - [u,v] \rangle$ be the ideal in T(g(V)) generated by $u\otimes v - v\otimes u - [u,v]$, $u,v\in g(V)$. The reviversal enveloping algebra $U(gl(V)) \stackrel{def}{=} T(gl(V)) / (u \otimes v - v \otimes u - [u,v])$ infrite-dimensional associative algebra

Example.
$$V = C^2$$
, gl_2 2×2 matrices

Basis: $e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Relations: $[e, f] = ef - fe = h$ $[x, I] = 0$ $\forall x \in \{e, f, h\}$.

 $[h, e] = he - eh = 2e$
 $[h, f] = hf - fh = -2f$
 $= > U(gl_2) \simeq C(e, f, h, I) / (Relations)$
 $U(gl_2)$ contains $f^{\otimes 2}$ wotation f^2 $fell = fell = fell$

Lefell - Lefel = Lihe gl = End(V) acts in V by $ev = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}v$ U(gl2) acts on Ton by:

 $\Delta X = X \otimes |+| \otimes X$ has the property $\Delta(ab) = \Delta a \cdot \Delta b$, $a, b \in gl(V)$. Check: $\Delta(ef-fe) = (e\otimes 1+1\otimes e)(f\otimes 1+1\otimes f) - (f\otimes (+1\otimes f)(e\otimes 1+1\otimes e) =$ $= (ef - fe) \otimes (+ (\otimes (ef - fe)) = h \otimes (+ (\otimes h)) = \Delta(h)$ $=> \Delta: \mathcal{U}(gl) \to \mathcal{U}(gl) \otimes \mathcal{U}(gl)$ defines a representation of $\mathcal{U}(gl)$ in $V^{\otimes 2}$ $\Delta^{3}X = (id \otimes \Delta)\Delta X = (id \otimes \Delta)(1\otimes X + X \otimes I) = |\otimes| |\otimes X + I \otimes X \otimes I + X \otimes I \otimes I$

 $(\Delta \mathcal{D} id) \Delta X$

=> We have the action of U(gl(V)) on V for nEN+ Theorem. Let $E = V^{\otimes h}$, Va finding vector space over C. Let geSn act by permutation of factors in V®n $f: C[S_n] \rightarrow E_{nd}E_{-}$ Lef $A = I_{m}f \subset E_{n}cI_{-}E_{n}$ Then B = Encla E is the image of U(gl(V)) in Encl E.

Yroof. Let $b \in \mathcal{U}(gl(V))$, clearly $s^nb : V^{\otimes n} \to V^{\otimes n}$ commutes with the permutations of factors. $V \otimes W \xrightarrow{\Delta b} bv \otimes w + v \otimes bw \xrightarrow{(12)} w \otimes bv + bw \otimes v$ $b \in gl(V)$ (12) wor ab bwor + wobr (Since $\Delta^h X = X \otimes |_{\Theta ... \otimes |} + |_{\otimes X \otimes |_{\Theta ... \otimes |}} + |_{\Theta |_{\Theta ... \otimes X}} \approx X \approx S$ symmetric). => Im (U(gl(V)) C End, E = B $B = End_A(V^{\otimes n}) = End_{C(S_n, T)}(V^{\otimes n}) = S^n(EndV)$ Symmetric endomorphisms. Lemma. (1) If U is a C-vector space, then SnU is spanned by elements $u \otimes ... \otimes u$, $u \in \mathcal{U}$

(2) For a C-algebra A, the algebra S^hA is generated by the elements $\Delta^h(a) = a \otimes 1 \otimes ... \otimes 1 + 1 \otimes a \otimes ... \otimes a$, $a \in A$.

Proof. (i) 5ⁿU is an irreducible representation of GL (U) achon: $g(u, \otimes u_2 ... \otimes u_K) = gu_1 \otimes gu_2 \otimes ... \otimes gu_K$ $g \in GL(u)$ => $g(u \otimes ... \otimes u) = gu \otimes ... \otimes gu => Span \{v \otimes ... \otimes v\} \subset S^n U$ The nonzero => the whole $S^n U$. (2) Theorem on symmetric functions (Newton's identifies): I polynomial with (b) coefficients such that $P(H_{i}(x),...H_{n}(x)) = X_{i}...X_{n}, \text{ where } H_{i}(x) = X_{i}^{i} + X_{2}^{i} + ... + X_{n}^{i}$ $P((X_1+\ldots+X_n),(X_1^2+\ldots+X_n^2)\ldots(X_n^n+\ldots\times_n^n))=X_1\ldots X_n$ $E \times P((X_1 + X_2), (X_1^2 + X_2^2)) = -\frac{1}{2}(X_1^2 + X_2^2) + \frac{1}{2}(X_1 + X_2)^2 = X_1 X_2$ Then $P(\Delta^h(a), \Delta^h(a^2)... \Delta^h(a^h)) = \alpha \otimes ... \otimes \alpha - \frac{63}{5}$ $X_i = / \otimes ... \otimes \alpha \otimes ... \otimes 1 => X_i X_2 ... X_n = \alpha \otimes ... \otimes \alpha$

Theorem (Schur-Weyl duality for U(gl(V)).)

(1) The image of A of C[Sn] and the image B of U(gl(V)) in End(V&n) are centralizers of each other

(2) Both A and B are semisimple, V sa semisimple representation of C(Sn) and U(gl(V)).

(3) $-V^{\otimes N} = \bigoplus V_{\lambda} \otimes L_{\lambda}$, λ partitions of n $\left\{ -V_{\lambda} \right\}_{\lambda} \text{ are Specht modules for } S_{n}, L_{\lambda} \text{ are inequivalent irreducible }$ $\text{representations of } \mathcal{U}(gl(V)), \text{ or } \text{ zero.}$

Proof $A = f(C(S_n))$ is semisimple, and $B = E_n c_A E => by the double centralizer theorem, all statements follow.$

Theorem. Schur-Weyl duality for GL(V).

Let GL(V) be the group of invertible matrices acting in V. Then as a representation of $S_n \times GL(V)$ in $V^{\otimes n}$ decomposes as $V^{\otimes n} = \bigoplus_{\lambda \vdash n} V_{\lambda} \otimes L_{\lambda}, \text{ where } V_{\lambda} \text{ are Specht modules}$

and $L_{\lambda} = Hom_{S_n}(\nabla_{\lambda}, \nabla^{\otimes n})$ are distinct irreducible representations of S_n , or zero.

Examples. (1)
$$V = \mathbb{C}^{k}$$
, $E = V \otimes V$, $\mathbb{C}[S_{2}]$ acts on $V^{\otimes 2}$

$$V^{\otimes 2} \simeq S^{2}V \oplus \Lambda^{2}V \simeq V_{(2)} \otimes L_{(2)} \oplus V_{(1,1)} \otimes L_{(1,1)}$$

$$k^{2} = \frac{(k+1)k}{2} + \frac{k(k+1)}{2} \qquad V_{friv} \qquad V_{sign}$$

(2)
$$V = C^k$$
, $E = V^{\otimes n}$
 $=> V^{\otimes n} = V_{friv} \otimes S^n V \oplus ... \oplus V_{Jigh} \otimes \chi^n V \qquad n>k$

(3)
$$V = C^2 = V^{\otimes 2} = V_{\text{triv}} \otimes L_2 \oplus V_{\text{sign}} \otimes L_0$$

$$\begin{cases} e_1, e_2 \stackrel{?}{\downarrow} \subset V \\ L_2 \cong \begin{cases} e_1 \otimes e_1 + e_2 \otimes e_1 \end{cases} & fe_1 \otimes e_2 - e_2 \otimes e_1 \stackrel{?}{\downarrow} \cong L_0 \\ l_1 \otimes e_2 + e_2 \otimes e_1 \end{cases}$$

$$d_1 m L_2 = 3 \qquad d_1 m L_0 = 1$$

$$V = C^2, \quad V \otimes 3 = V_{(3)} \otimes L_{(3)} \oplus V_{(2,1)} \otimes L_{(2,1)} \\ d_1 m = 8 \qquad 1 \qquad 4 \qquad 2 \qquad 4$$

$$L_{(3)} = S^3 V \Rightarrow d_1 m L_{(3)} = \begin{pmatrix} 3+21 \\ 3 \end{pmatrix}$$

$$= 4$$

$$Only \text{ the partitions with # of rows} \leq d_1 m V \text{ will appear.}$$

-- The End --

Representation theory. Geometry of \hat{G} , \hat{g} Geometry of 6, g Double affine alg Affine Kac-Moody calgebras Semismple Lie groups Complex Lie alg. equivalences Luantum Ellipho 9-gps 9,t equivaluce Gfrife Cover K, charK>0 over K, charK>0