
EPFL - Fall 2022 Prof. Zs. Patakfalvi

Rings and modules Solutions

Final exam - solutions

Throughout these solutions, r always denotes the class of an element r
in some quotient.

Exercise 1.

We have to show that the V (I)'s satisfy axioms of a topology for the closed

subsets (1 pt), namely

(1) there exists I ⊴ R such that V (I) = ∅ ;
(2) there exists I ⊴ R such that V (I) = SpecR ;

(3) for all ideals I1, . . . , In, there exists J ⊴ R such that V (J) = ∪n
j=1V (Ij) ;

(4) for all collections of ideals {Ij}j∈A, there exists J ⊴ R such that

V (J) = ∩j∈AV (Ij).

Let us show all this.

(1) Since any prime ideal is by de�nition strictly contained in R, V (R) = ∅.
(1 pt).

(2) Since any ideal contains 0, V ((0)) = SpecR. (1 pt).

(3) Let J = I1 · · · Ij . Let us show that V (J) = ∪n
j=1V (Ij). (1 pt)

Since J ⊆ Ij for all j, we deduce that V (Ij) ⊆ V (J) for all j, whence
∪n
j=1V (Ij) ⊆ V (J). (1 pt).

On the other hand, if p ∈ V (J) (i.e. p ⊇ J), assume by contradiction

that for all j, Ij ̸⊆ p. Then for all j, there exists aj ∈ Ij such that aj /∈
p. However,

∏n
j=1 aj ∈ J by de�nition, so in particular

∏n
j=1 aj ∈ p.

Since p is prime, some aj ∈ p, which is a contradiction. Thus, we also

have V (J) ⊆ ∪n
j=1V (Ij). (4 pts).

(4) Let J =
∑

j Ij ⊴ R. We show that V (J) = ∩j∈AIj . (1 pt)

Since Ij ⊆ J for all j, V (J) ⊆ V (Ij) for all j, whence V (J) ⊆
∩j∈AV (Ij). (1 pt).

On the other hand, if p ∈ ∩j∈AV (Ij), then by de�nition Ij ⊆ p
for all j, so J =

∑
j∈A Ij ⊆ p, i.e. p ∈ V (J). Thus, we also have

∩j∈AV (Ij) ⊆ V (J). (1 pt)

(Remove 1 pt for those that write V (I) ∩ V (J) = V (I ∪ J)).

Exercise 2. (1) A transcendence basis of L over K is a subset A ⊆ L, such
that A is algebraically independent over K and L is algebraic over

K(A). (2 pts)



(2) Assume �rst that S is a �eld, and let r ∈ R be a non-zero element. Since

S ↪→ R is an integral extension, there exists n ≥ 0 and a0, . . . , an−1 ∈ S
such that

rn + an−1r
n−1 + · · ·+ a0 = 0

(1 pt)

Assume n is minimal for this property. Then a0 ̸= 0, as otherwise

r(rn−1 + an−1r
n−2 + · · ·+ a1) = 0

and since r ̸= 0 and R is a domain, also n − 1 satis�es this property.

(1 pt)

Thus, a0 ̸= 0 so since S is a �eld, we obtain

−1

a0
(rn−1 + · · ·+ a1)r = 1

Therefore, r is invertible. (2 pts)

Now, let us assume that R is a �eld, and let s ∈ S be a non-zero

element. Since R is a �eld, there exists r ∈ R such that rs = 1, so we

have to show that r ∈ S (1 pt).

Since S ↪→ R is an integral extension, there exist a0, . . . , an−1 ∈ S such

that

rn + an−1r
n−1 + · · ·+ a0 = 0

(1 pt).

Multiplying by sn−1 gives

r = −(an−1 + an−2s+ · · ·+ a0s
n−1)

Since the right-hand side is in S, we deduce that r ∈ S, so we win. (2

pts)

(3) By Noether normalization, there exists a sub-F -algebra S ⊆ R such

that S ∼= F [t1, . . . , tr] as R-algebras and that S ⊆ R is an integral

extension. (2 pts)

Since S ⊆ R induces an algebraic extension after passing to the fraction

�elds,

0 < trdegF (Frac(R)) = trdeg(Frac(S)) = trdegF (F (x1, . . . , xr)) = r

If R was a �eld, then so would be S by the previous point, and hence

F [x1, . . . , xr] would be a �eld. Since r > 0, this is impossible. (4 pts)

Exercise 3.

Let (∗) denote the things we are allowed to use that are stated in the exercise.



(1) Let p0 ⊆ . . . ⊆ pn = p be a strict chain of prime ideals of T−1R. Then
pc0 ⊆ . . . ⊆ pcn = pc is also a chain of prime ideals (by (∗)), and it is

strict. Indeed, if pci = pci+1 for some i < n, then pi = pcei = pcei+1 =
pi+1 (the equalities follow from (∗)) which contradicts the assumption.

Therefore, by de�nition, ht(p) ≤ ht(pc).

On the other hand, if q0 ⊆ . . . ⊆ qn = pc is a strict chain of prime

ideals, then since pc ∩ T = ∅ (by (∗)), also qi ∩ T = ∅ for all i. Hence,
by (∗), we know that qe0 ⊆ . . . ⊆ qen = pce = p is a chain of prime

ideals. This chain is strict, because if qei = qei+1 for some i < n, then
qi = qeci = qeci+1 = qi+1 (again by (∗)) so we have a contradiction. Thus,
by de�nition ht(pc) ≤ ht(p). (4 pts)

(2) Recall that by de�nition, Rp = T−1R where T = R \ p. Since p ∩ (R \
p) = ∅, we know by (∗) that pe is a prime (and in particular strict)

ideal. (1 pt).

Now, let us show that any element in Rp\pe is invertible. Let r
s ∈ Rp\pe

with r ∈ R, s ∈ S. Since r
s /∈ Rp, we know by (∗) that r /∈ p. Therefore,

s
r ∈ Rp, and by de�nition

s

r

r

s
=

rs

rs
=

1

1
= 1Rp

Thus, r
s ∈ Rp is invertible, so we have shown that pe ⊆ Rp is a strict

ideal such that any element which is not in it is invertible. (4 pts).

Thus, any strict ideal has to be contained in pe (otherwise it would

contain an invertible element), so pe is necessarily the unique maximal

ideal of Rp, i.e. Rp is local with unique maximal ideal pe. (2 pts)

(3) Since Rp is local with maximal ideal, it is immediate from the de�ni-

tions that dim(Rp) = ht(pe). On the other hand, by the �rst point we

see that ht(pe) = ht(pec) so we conclude since pec = p by (∗). (3 pts)

Exercise 4.

Let γB′ ∈ B′. Since c is surjective, there exists γC ∈ C such that c(γC) =
f ′
2(γB′). But then,

d(f3(γC)) = f ′
3(c(γC)) = f ′

3(f
′
2(γB′)) = 0

so since d is injective, f3(γC) = 0. (4 pts)

By exactness, there exists γB ∈ B such that f2(γB) = γC , so we obtain

f ′
2(γB′−b(γB)) = f ′

2(γB′)−f ′
2(b(γB)) = f ′

2(γB′)−c(f2(γB)) = f ′
2(γB′)−c(γC) = 0

By exactness, there exists γA′ ∈ A′ such that f ′
1(γA′) = γB′ − b(γB). (4 pts)



By surjectivity of a, there exists γA such that a(γA) = γA′ . Therefore,

we �nally obtain

b(f1(γA) + γB) = b(f1(γA)) + b(γB)

= f ′
1(a(γA)) + b(γB)

= f ′
1(γA′) + b(γB)

= γB′ − b(γB) + b(γB)

= 0

so γB′ ∈ im(b). (4 pts)

Exercise 5. (1) Let us show that dimR(M) = 4, by showing that {1, x, y, xy}
forms a basis (2 pts). First note that (x2, x2 + y2) = (x2, y2)

Linearly independent : If not, there would exist (a, b, c, d) ̸= (0, 0, 0, 0)
in R4 such that

a+ bx+ cy + dxy = γx2 + δy2

for some γ, δ ∈ R[x, y]. Since the combination is non-trivial, the right-

hand side is non-zero. Therefore it has to have degree ≥ 2 in either

x or y, but this is not the case for the left-hand side. Thus we get a

contradiction. (2 pts)

They generate M : Given p(x, y) ∈ R[x, y], we can write it as p(x, y) =
a + bx + cy + dxy + q1x

2 + q2y
2 for q1, q2 ∈ R[x, y] and real numbers

a, b, c, d. Therefore, in the quotient by (x2, y2), p is an R-linear combi-
nation of {1, x, y, xy} so we win. (1 pt)

Let us now show that dimR(N) = 4. As R-vector spaces (in fact even

as R-algebras),

R[x, y]/(x2, y2 + 1) ∼=
(
R[y]/(y2 + 1)

)
/(x2) ∼= C[x]/(x2)

This C-vector space has dimension 2 (same argument as what we did

for M), so the underlying R-vector space has dimension 4. (5 pts).

If the student proceeds again to show linear independence and

generation with an explicit basis, 1 pt for the basis and 2 pts

for both generation and linear independence. In particular, if

the student just gave both basis, they get 3 pts.

(2) We have seen in the solutions of the �rst hand-in exercise (exercise

6 in sheet 2) that if k is any �eld, the length of k[x, y]/(yn, ym) as a
k[x, y]-module is nm. Thus, here we get that the length is 4.

One could also show it directly : since the dimension is 4, the length

cannot be greater than 4 (an R[x, y]-module is in particular an R-
vector space). So all we have to do is to exhibit a chain of submodules



of length 4. Consider

(0) ⊆ (xy) ⊆ (x) ⊆ (x, y) ⊆ M

We just have to show that all inclusions are strict.

Since xy is part of a basis, it cannot be 0, so the �rst inclusion is strict.

For the second one, if it was not strict, then we would obtain

x = γxy + β1x
2 + β2y

2

for some β1, β2, γ ∈ R[x, y]. Setting y = 0 and comparing degrees shows

that this is impossible.

For the third one, if this was not strict, we would obtain

y = γx+ β1x
2 + β2y

2

for some γ, β1, β2 ∈ R[x, y]. Setting x = 0 and comparing degrees gives

again a contradiction.

For the fourth one, if it was not strict, then we could write

1 = αx+ βy + γx2 + δy2

for some α, β, δ, γ ∈ R[x, y]. Setting x = y = 0 gives the sought contra-
diction. (5 pts : 2 pts for giving the chain and 3 points for the

explanation)

(3) Since y2 + 1 acts as 0 on N , N is naturally a R[x, y]/(y2 + 1)-module,

and being a R[x, y]-submodule of N is exactly the same as being a

R[x, y]/(y2 + 1)-submodule. Now there is a ring isomorphism

R[x, y]/(y2 + 1) ∼= C[x]

sending x to x and y to i, and under this isomorphism of rings, N
corresponds to the C[x]-module C[x]/(x2) (this is because x2 is sent to
x2 in the above ring isomorphism). Thus, the length of N as an R[x, y]-
module is exactly the same as the length of C[x]/(x2) as a C[x]-module.

We have seen in exercise 4.1 of sheet 2 that the length of this module

is 2 (one could also say that (0) ⊆ (x) ⊆ C[x]/(x2) is a composition

series, by the same argument as what we did for M). (5 pts)

If the student gives a chain and shows it works, 1 point for

giving the chain and 4 for showing it works

Exercise 6. (1) Let M be a simple module. As we have seen in exercise

1.2 in sheet 1, M ∼= S/Ann(m) for some m ∈ M . (1 pt).

Since Ann(m) is an ideal, it has to be either maximal or the whole

ring S (otherwise this would contradict the simplicity of M by the



correspondence theorem). Thus we have shown that any simple module

is of the form S/I where I is either maximal or S.

Since AnnS(S/I) = I, we deduce that

M ∼= S/AnnS(M)

In particular we immediately conclude that is M and N are two simple

modules with AnnS(M) = AnnS(N), then M ∼= N . (2 pts)

To see the converse, note that in general, if M ∼= N for any modules

M , N , then AnnS(M) = AnnS(N). Indeed, let θ : M → N be an

isomorphism. Then if a ∈ AnnS(N), we have for all m ∈ M , 0 =
aθ(m) = θ(am) so by injectivity of θ, am = 0. Thus, a ∈ AnnS(M),
Doing the same with θ−1 proves the claim. (1 pt)

(2) Since M ̸= 0, we know by the above discussion that M ∼= R/I for I
a maximal ideal of R. We conclude by the weak Nullstellensatz (by

assumption, F is algebraically closed). (2 pts)

(3) Note that if 0 → A → B → C → 0 is a short exact sequence of �nite

length R-modules, then by exercise 2 of sheet 2,

length(B) = length(A) + length(C)

and by basic linear algebra,

dimF (B) = dimF (A) + dimF (C)

(we do not know yet if the dimensions are �nite, so we set∞ = ∞+∞).

Thus, by induction on the length, all we have to do is to show that if

M is a non-zero simple module, dimF (M) = 1. (3 pts)

By the previous point, such an M is isomorphic (as an R-module, so

in particular as an F -vector space) to

R/(x1 − c1, . . . , xn − cn)

for some c1, . . . , cn ∈ F . Let us show that {1} is a basis. It is li-

nearly independent since 1 /∈ (x1 − c1, . . . , xn − cn) (evaluate at x1 =
c1, . . . , xn = cn to see this), so we are left to show that it generates

R/(x1 − c1, . . . , xn − cn). Given p(x1, . . . , xn), write

p(x1 + c1, . . . , xn + cn) = a+ α1x1 + · · ·+ αnxn

with αi ∈ R, a ∈ F . Then

p(x1, . . . , xn) = a+
∑
i

αi(x1 − c1, . . . , xn − cn)(xi − ci)

so in the quotient, is it a multiple of 1. (1 pt)



(4) Let R := F [x, y] and M = F [x, y]/(x, y). We have seen in Example

4.1.2 of the notes that a projective resolution of M is

0 → R
α−→ R⊕2 β−→ R

where α(r) = (yr,−xr) and β(r, s) = rx+ ys. (1 pt)

Let us compute HomR(α,M) and HomR(β,M). In fact, we claim that

both maps are 0.

Let us see it for HomR(α,M). Given γ : R⊕2 → M , we have

γ(α(r)) = γ(yr,−xr) = yγ(r, 0)− xγ(0, r)

However, both x and y act as 0 on M by de�nition, so

HomR(α,M)(γ) = γ ◦ α = 0

(3 pts)

In fact, the same argument shows that Hom(β,M) = 0, so

Ext1R(M,M) ∼= HomR(R
⊕2,M) ∼= M⊕2

Let us show the last isomorphism. We know that HomR(−,M) is ad-
ditive, so it is enough to show that HomR(R,M) ∼= M . The following

maps are inverses : HomR(R,M) → M sending f to f(1) and the map

M → HomR(R,M) sending m to f : R → M de�ned by f(r) = rm.

(1 pt)

(5) Let a ∈ F , and consider the extension

0 → M
δ−→ Ma

µ−→ M → 0

where Ma = R/(x2, xy, x− ya), δ : M → Ma is de�ned by

δ(r) = xr

(this is well-de�ned since x ∈ Ma is (x, y)-torsion by de�nition) and

µ : Ma → M is the canonical map coming from the inclusion of ideals

(x2, xy, y − xa) ⊆ (x, y) (i.e. the factorization of the quotient map

R → R/(x, y) through Ma). (3 pts)

Let us �rst show this is exact. Since µ : Ma → M is the factorization

of a surjective map, it is also surjective. Furthermore, µ ◦ δ = 0 since

µ(x) = 0, so we have ker(µ) ⊇ im(δ). Let us show the other inclusion.

Assume µ(r) = 0, then by de�nition we can write r = λ1x + λ2y
(r ∈ R denotes a lift of r). In Ma, y = −xa, so r = δ(λ1 − λ2a). Thus,
ker(µ) = im(δ). Finally, let us show that δ is not the zero map. This

will immediately conclude its injectivity since M is simple.



If δ was the zero map, then by the above µ would be an isomorphism,

or in other words (x2, xy, y−xa) = (x, y). In particular we would have

x ∈ (x2, xy, y − xa), so we could write x = λ1x
2 + λ2xy + λ3(y − xa).

Since x and y−xa are coprime, we must have that x divides λ3 (write

λ3 = xλ′
3). Then dividing by x gives

1 = λ1x+ λ2y + λ′
3(y − xa)

Putting x = y = 0 in the above gives 1 = 0, which is a contradiction.

Thus we have �nally proven that these sequences are exact. (3 pts)

Now we are left to show that these extensions are not trivial, thatMa ̸∼=
Mb for all a ̸= b ∈ F and that F is in�nite. The latter statement holds

since F is algebraically closed (a �nite �eld k cannot be algebraically

closed, because the polynomial
∏

a∈k(t− a) + 1 has no root). (1 pt)

To see the �rst statement, if this extension was trivial, then we would

automatically have Ma
∼= M⊕2. But then, by what we did in the �rst

point, their annihilators would agree. This would give (x2, xy, y−xa) =
(x, y). We have already proven this does not hold before. (2 pts)

To see that for all a ̸= b ∈ F , Ma ̸∼= Mb, it is again enough to show

that their annihilators are di�erent, i.e. that

(x2, xy, y − xa) ̸= (x2, xy, y − xb)

Let us show that y − xa /∈ (x2, xy, y − xb). By contradiction, since

y−xa = y−xb+(a−b)x, we would obtain that (a−b)x ∈ (x2, xy, y−xb).
But a− b ∈ F \ {0} ⊆ R×, so we would further obtain x ∈ (x2, xy, y−
xb). We have already proven this is not the case (when showing that δ
was injective) so we win. (2 pts)

If the student uses the explicit description of the isomorphism

between the �rst Ext-group and the Yoneda extensions, then

they get 4 points, and 7 are dedicated to showing the rest : 1

for the in�nite �eld, 6 points to explain why the modules are

pairwise non-isomorphic.


