EPFL - Fall 2022 Prof. Zs. Patakfalvi
Rings and modules Solutions
Final exam - solutions

Throughout these solutions, 7 always denotes the class of an element r
in some quotient.

Exercise 1.
We have to show that the V(I)’s satisfy axioms of a topology for the closed
subsets (1 pt), namely

(1) there exists I < R such that V(I) =0;

(2) there exists I < R such that V(I) = Spec R;

(3) forallideals I1,..., I, there exists J < R such that V(J) = UJ_, V(I;) ;

(4) for all collections of ideals {I;};ca, there exists J < R such that

Let us show all this.

(1) Since any prime ideal is by definition strictly contained in R, V/(R) = ().
(1 pt).

(2) Since any ideal contains 0, V((0)) = Spec R. (1 pt).

(3) Let J =Iy---I;. Let us show that V(J) = U7_,V(;). (1 pt)
Since J C I; for all j, we deduce that V(I;) C V(J) for all j, whence
D V(L) V(). (L pt).
On the other hand, if p € V(J) (i.e. p D J), assume by contradiction
that for all j, I; € p. Then for all j, there exists a; € I; such that a; ¢
p. However, [[7_; a; € J by definition, so in particular [[}_; a; € p.
Since p is prime, some a; € p, which is a contradiction. Thus, we also
have V(J) C U?_,V(I;). (4 pts).

(4) Let J =3, I; < R. We show that V(J) = Njeal;. (1 pt)
Since I; C J for all j, V(J) C V(I;) for all j, whence V(J) C
NjeaV(I;). (1 pt).
On the other hand, if p € N;caV(I;), then by definition I; C p
for all j, so J = ZjeAIJ C p, ie. p € V(J). Thus, we also have
NjeaV(I;) € V(J). (1 pt)

(Remove 1 pt for those that write V(I) NV (J) =V (I UJ)).

Exercise 2. (1) A transcendence basis of L over K is a subset A C L, such
that A is algebraically independent over K and L is algebraic over
K(A). (2 pts)



(2) Assume first that S'is a field, and let 7 € R be a non-zero element. Since
S — Ris an integral extension, there exists n > 0 and ag,...,an—1 € S
such that

"4 a1 b ag =0

(1 pt)
Assume n is minimal for this property. Then ag # 0, as otherwise

r(r" a4 ar) =0

and since r # 0 and R is a domain, also n — 1 satisfies this property.
(1 pt)
Thus, ag # 0 so since S is a field, we obtain
-1 n—1
7(7- +...+a1)T:1
ag
Therefore, r is invertible. (2 pts)

Now, let us assume that R is a field, and let s € S be a non-zero
element. Since R is a field, there exists r € R such that rs = 1, so we
have to show that r € S (1 pt).

Since S — R is an integral extension, there exist ag,...,a,—1 € S such

that

1

" +ap_1r"" "+ 4+ap=0

(1 pt).
Multiplying by s"~! gives

r=—(an-1+ an_os+ - +ags""")

Since the right-hand side is in S, we deduce that r € S, so we win. (2
pts)

(3) By Noether normalization, there exists a sub-F-algebra S C R such
that S = F[t1,...,t,] as R-algebras and that S C R is an integral
extension. (2 pts)

Since S C R induces an algebraic extension after passing to the fraction
fields,

0 < trdegy (Frac(R)) = trdeg(Frac(S)) = trdegp(F (x1,...,2)) =7

If R was a field, then so would be S by the previous point, and hence
Flz1,...,z,] would be a field. Since r > 0, this is impossible. (4 pts)

Exercise 3.
Let (x) denote the things we are allowed to use that are stated in the exercise.



(1)

(3)

Let pg C ... C p, = p be a strict chain of prime ideals of T~'R. Then
pG C ... C pS = p©is also a chain of prime ideals (by (%)), and it is
strict. Indeed, if p{ = pf,, for some ¢ < n, then p; = p{* = pi$, =
pit1 (the equalities follow from (x)) which contradicts the assumption.
Therefore, by definition, ht(p) < ht(p©).

On the other hand, if gg C ... C ¢, = p° is a strict chain of prime
ideals, then since p° NT = 0 (by (x)), also ¢; N'T = @ for all i. Hence,
by (*), we know that ¢§ C ... C ¢ = p® = p is a chain of prime
ideals. This chain is strict, because if ¢f = ¢f,; for some 7 < n, then
¢ = ¢ = q¢§%1 = qi+1 (again by (x)) so we have a contradiction. Thus,
by definition ht(p®) < ht(p). (4 pts)

Recall that by definition, R, = T~'R where T = R\ p. Since pN (R '\
p) = 0, we know by () that p® is a prime (and in particular strict)
ideal. (1 pt).

Now, let us show that any element in R,,\p® is invertible. Let £ € R,\p®
with 7 € R, s € S. Since £ ¢ R, we know by (x) that r ¢ p. Therefore,
2 € Ry, and by definition

QO

o)

srt_rs _1_

rs rs 1
Thus, ¢ € R, is invertible, so we have shown that p® C R, is a strict
ideal such that any element which is not in it is invertible. (4 pts).
Thus, any strict ideal has to be contained in p® (otherwise it would
contain an invertible element), so p® is necessarily the unique maximal
ideal of R,, i.e. R, is local with unique maximal ideal p°. (2 pts)

Since R, is local with maximal ideal, it is immediate from the defini-
tions that dim(R,) = ht(p®). On the other hand, by the first point we
see that ht(p®) = ht(p®®) so we conclude since p®“ = p by (x). (3 pts)

Exercise 4.
Let vgr € B'. Since c is surjective, there exists 7o € C such that c¢(y¢) =
f5(ypr). But then,

d(f3(ve)) = fale(yvo)) = f3(fa(vp) =0

so since d is injective, f3(yc) = 0. (4 pts)
By exactness, there exists yg € B such that fa(y5) = ¢, so we obtain

fo(yp=b(vB)) = fa(vp)—f2(b(vB)) = fo(vp)—c(f2(vB)) = f2(vBr)—c(yc) =0

By exactness, there exists 74 € A’ such that f{(va) = vp —b(yB). (4 pts)



By surjectivity of a, there exists y4 such that a(y4) = vas. Therefore,
we finally obtain

b(f1(va) +vB) = b(f1(v4)) + b(¥B)
= fila(va)) +b(vB)
= filva) +0(vB)
= — b(yB) + b(vB)
=0

so vp € im(b). (4 pts)

Exercise 5. (1) Let us show that dimg (M) = 4, by showing that {1, 7,7, Ty}
forms a basis (2 pts). First note that (22, 2% 4+ y?) = (22, %?)
Linearly independent : If not, there would exist (a, b, ¢, d) # (0,0,0,0)
in R* such that

a+bx + cy + dey = ya* + 0y

for some 7,9 € R|x,y]. Since the combination is non-trivial, the right-
hand side is non-zero. Therefore it has to have degree > 2 in either
x or y, but this is not the case for the left-hand side. Thus we get a
contradiction. (2 pts)

They generate M : Given p(x,y) € Rz, y], we can write it as p(x,y) =
a+ bx + cy + dvy + 12 + qoy? for q1,qo € R[z,y] and real numbers
a,b, c,d. Therefore, in the quotient by (22, y?), P is an R-linear combi-
nation of {1,7,7, Ty} so we win. (1 pt)

Let us now show that dimg(N) = 4. As R-vector spaces (in fact even
as R-algebras),

Rlz,y]/ (2% v* + 1) = (R[y)/(y* + 1)) /(2?) = C[z]/(z?)

This C-vector space has dimension 2 (same argument as what we did
for M), so the underlying R-vector space has dimension 4. (5 pts).

If the student proceeds again to show linear independence and
generation with an explicit basis, 1 pt for the basis and 2 pts
for both generation and linear independence. In particular, if
the student just gave both basis, they get 3 pts.

(2) We have seen in the solutions of the first hand-in exercise (exercise

6 in sheet 2) that if k is any field, the length of k[z,y]/(y",y™) as a
k[x,y]-module is nm. Thus, here we get that the length is 4.

One could also show it directly : since the dimension is 4, the length
cannot be greater than 4 (an R[z,y]-module is in particular an R-
vector space). So all we have to do is to exhibit a chain of submodules



of length 4. Consider
0)c(@y)c (@ c @y M

We just have to show that all inclusions are strict.
Since Ty is part of a basis, it cannot be 0, so the first inclusion is strict.
For the second one, if it was not strict, then we would obtain

r = yry + Bra? + Bay?

for some f1, B2,v € Rz, y|. Setting y = 0 and comparing degrees shows
that this is impossible.

For the third one, if this was not strict, we would obtain

y =z + B1a* + Boy?

for some 7, 81, B2 € Rz, y|. Setting = 0 and comparing degrees gives
again a contradiction.

For the fourth one, if it was not strict, then we could write
1 = azx + By + ya* + 0y

for some a, 3, 9,7 € R[z,y]. Setting x = y = 0 gives the sought contra-
diction. (5 pts : 2 pts for giving the chain and 3 points for the
explanation)

(3) Since y? + 1 acts as 0 on N, N is naturally a R[z, y]/(y? + 1)-module,
and being a Rz, y]-submodule of N is exactly the same as being a
R[z,y]/(y? + 1)-submodule. Now there is a ring isomorphism

R[z,y]/(y* +1) = Cla]

sending = to x and y to ¢, and under this isomorphism of rings, N
corresponds to the C[x]-module C[x]/(z?) (this is because x? is sent to
22 in the above ring isomorphism). Thus, the length of N as an R[z, y]-
module is exactly the same as the length of C[x]/(2?) as a C[x]-module.
We have seen in exercise 4.1 of sheet 2 that the length of this module
is 2 (one could also say that (0) C (z) C C[xz]/(2?) is a composition
series, by the same argument as what we did for M). (5 pts)

If the student gives a chain and shows it works, 1 point for
giving the chain and 4 for showing it works

Exercise 6. (1) Let M be a simple module. As we have seen in exercise
1.2 in sheet 1, M = S/Ann(m) for some m € M. (1 pt).
Since Ann(m) is an ideal, it has to be either maximal or the whole
ring S (otherwise this would contradict the simplicity of M by the



correspondence theorem). Thus we have shown that any simple module
is of the form S/I where I is either maximal or S.

Since Anng(S/I) = I, we deduce that
M = S/Anng(M)

In particular we immediately conclude that is M and N are two simple
modules with Anng(M) = Anng(N), then M = N. (2 pts)

To see the converse, note that in general, if M = N for any modules
M, N, then Anng(M) = Anng(N). Indeed, let § : M — N be an
isomorphism. Then if a € Anng(N), we have for all m € M, 0 =
af(m) = O(am) so by injectivity of 6, am = 0. Thus, a € Anng(M),
Doing the same with #~! proves the claim. (1 pt)

Since M # 0, we know by the above discussion that M = R/I for I
a maximal ideal of R. We conclude by the weak Nullstellensatz (by
assumption, F' is algebraically closed). (2 pts)

Note that if 0 - A — B — C' — 0 is a short exact sequence of finite
length R-modules, then by exercise 2 of sheet 2,

length(B) = length(A) + length(C)
and by basic linear algebra,

(we do not know yet if the dimensions are finite, so we set 0o = co+00).
Thus, by induction on the length, all we have to do is to show that if
M is a non-zero simple module, dimp(M) = 1. (3 pts)

By the previous point, such an M is isomorphic (as an R-module, so
in particular as an F-vector space) to

R/(x1—c1y. ..y Ty — Cp)

for some c1,...,c, € F. Let us show that {1} is a basis. It is li-
nearly independent since 1 ¢ (z1 — ¢1,...,T, — ¢,) (evaluate at x; =
Cl,y...,Tyn = Cy to see this), so we are left to show that it generates
R/(x1 —c1y...,xn — ¢y). Given p(x1,...,zy), write

plxr+c1,...,op+cp) =a+arxr + -+ apzy

with ; € R, a € F. Then

(1, T0) =a+zaz‘($1 —Cly ey Ty — Cn)(Ti — )
i

so in the quotient, is it a multiple of 1. (1 pt)



(4)

Let R := Flz,y] and M = Flz,y]/(z,y). We have seen in Example
4.1.2 of the notes that a projective resolution of M is

05 RS R A R

where a(r) = (yr, —zr) and S(r,s) = rz +ys. (1 pt)

Let us compute Homp(a, M) and Hompg(3, M). In fact, we claim that
both maps are 0.

Let us see it for Hompg (o, M). Given y : R®?2 — M, we have

Y(a(r)) =~(yr, —ar) = yy(r,0) — 2y(0,7)
However, both z and y act as 0 on M by definition, so
Homp(a, M)(y) =7v0oa =0

(3 pts)
In fact, the same argument shows that Hom(3, M) = 0, so

Exth(M, M) = Hompg(RY?, M) = M%?

Let us show the last isomorphism. We know that Hompg(—, M) is ad-
ditive, so it is enough to show that Hompg(R, M) = M. The following
maps are inverses : Hompg(R, M) — M sending f to f(1) and the map
M — Hompg(R, M) sending m to f : R — M defined by f(r) = rm.
(1 pt)

Let a € F, and consider the extension

0 MM, % M0
where M, = R/(2% 2y, — ya), § : M — M, is defined by
o(r) =127

(this is well-defined since T € M, is (x,y)-torsion by definition) and
My, — M is the canonical map coming from the inclusion of ideals
(22, zy,y — za) C (z,y) (i.e. the factorization of the quotient map
R — R/(x,y) through M,). (3 pts)

Let us first show this is exact. Since p : M, — M is the factorization
of a surjective map, it is also surjective. Furthermore, o § = 0 since
() =0, so we have ker(u) O im(0). Let us show the other inclusion.
Assume p(7) = 0, then by definition we can write r = Az + Aoy
(r € R denotes a lift of 7). In M,, § = —a, so T = 6(A\; — Aea). Thus,
ker(p) = im(d). Finally, let us show that ¢ is not the zero map. This
will immediately conclude its injectivity since M is simple.



If § was the zero map, then by the above p would be an isomorphism,
or in other words (22, 2y, y — ra) = (x,%). In particular we would have
r € (22, 2y,y — xa), so we could write x = A1z + \oxy + A3(y — za).
Since x and y — xa are coprime, we must have that x divides A3 (write
A3 = xA). Then dividing by = gives

1= XMz + Ay + Ns(y — za)

Putting x = y = 0 in the above gives 1 = 0, which is a contradiction.
Thus we have finally proven that these sequences are exact. (3 pts)
Now we are left to show that these extensions are not trivial, that M, %
M, for all a # b € F and that F is infinite. The latter statement holds
since F' is algebraically closed (a finite field k cannot be algebraically
closed, because the polynomial J] ., (t —a) + 1 has no root). (1 pt)
To see the first statement, if this extension was trivial, then we would
automatically have M, = M®2. But then, by what we did in the first
point, their annihilators would agree. This would give (22, 2y, y—za) =
(x,y). We have already proven this does not hold before. (2 pts)

To see that for all a # b € F, M, 2 M,, it is again enough to show
that their annihilators are different, i.e. that

(¢%, 2y, y — xa) # (2*,xy,y — xb)

Let us show that y — za ¢ (2%, 2y,y — zb). By contradiction, since
y—za = y—rb+(a—b)x, we would obtain that (a—b)z € (22, zy, y—xb).
But a —b € F\ {0} C R*, so we would further obtain x € (22, zy,y —
xb). We have already proven this is not the case (when showing that §
was injective) so we win. (2 pts)

If the student uses the explicit description of the isomorphism
between the first Ext-group and the Yoneda extensions, then
they get 4 points, and 7 are dedicated to showing the rest : 1
for the infinite field, 6 points to explain why the modules are
pairwise non-isomorphic.



