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Rings and modules (MATH-311) — Final exam — Solutions
29 January 2022, 8 h 15 – 11 h 15

The exam consisted of five exercises. The first four were worth 16 points each and the last one
was worth 36 points. So there was a total of 100 points in the exam. It was possible to solve any
point of an exercise assuming the statements of the previous points, even if not all of those were
solved. Also, a partial solution to a point gives partial credit.
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Exercise 1
[
16 pts

]
In the next exercise you can use without proof the following statement: let γ : A → B and
ξ : A→ C be two R-module homomorphisms and assume that γ is surjective. Then:

ξ ∈ im HomR(γ,C)⇐⇒ ker ξ ⊇ ker γ

(1) Show that for an arbitrary ring R and an R-module N , the functor HomR( , N) is left
exact, which means (by definition) that for every short exact sequence of R-modules

0 // L
α //M

β // K // 0

the following sequence is exact

HomR(L,N) HomR(M,N)
HomR(α,N)oo HomR(K,N)

HomR(β,N)oo 0oo

(2) Give an example where HomR(α,N) in the above sequence is not surjective.

Solution.

(1) [10 pts] We call SES the short exact sequence 0→ L
α→ M

β→ K → 0. We want to show
that HomR(SES, N) is exact at HomR(K,N) and HomR(M,N). Note that HomR(α,N)
resp. HomR(β,N) are just precomposition by α resp. β.

Exactness at HomR(K,N): [5 pts] We want to show that the kernel of HomR(β,N)
is equal to the image of 0 → HomR(K,N), i.e. that HomR(β,N) is injective. Let
φ ∈ ker HomR(β,N) be arbitrary, i.e. φ ◦ β = 0. Then imβ ⊆ kerφ, but by exactness of
SES at K we have that imβ = K. Thus φ = 0, and we conclude ker HomR(β,N) = 0.
This proves exactness at HomR(K,N).

Exactness at HomR(M,N): [5 pts] Notice that as HomR( , N) is a contravariant functor
we have

HomR(α,N) ◦HomR(β,N) = HomR(β ◦ α︸ ︷︷ ︸
=0

, N) = 0

where for the last equality we used that precomposition by the zero-map is the zero-
map. Hence im HomR(β,N) ⊆ ker HomR(α,N) [2 pts], so it remains to show the reverse
inclusion. Let ψ ∈ ker HomR(α,N) be arbitrary, i.e. ψ ◦ α = 0. By exactness of SES at
M , we obtain

kerβ
SES
= imα ⊆ kerψ.

As β : M → K is surjective, the statement in the beginning of the exercise implies that ψ ∈
im HomR(β,N). As ψ ∈ ker HomR(α,N) was arbitrary, we conclude im HomR(β,N) ⊇
ker HomR(α,N) [3 pts], and thus im HomR(β,N) = ker HomR(α,N).

(2) [6 pts]: 3 pts for giving a right counterexample and 3 pts for its justification We take
R = L = M = N = Z, K = Z/2Z, α : L → M multiplication by 2, and β : M → K

the natural projection map. Then 0→ L
α→M

β→ K → 0 is clearly exact. Now consider
idZ ∈ HomR(L,N) and suppose by contradiction that there exists ψ ∈ HomR(M,N) with
idZ = HomR(α,N)(ψ), i.e. idZ = ψ ◦ α. Then

1 = idZ(1) = ψ(α(1)) = ψ(2) = 2ψ(1).

This is a contradiction as 1 is odd. So HomR(α,N) isn’t surjective.
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Exercise 2
[
16 pts

]
Let F be a field.

In this exercise you can use without proof the following:

• for ci ∈ F , the ideal mc1,...,cn = (x1 − c1, . . . , xn − cn) ⊆ F [x1, . . . , xn] is a maximal ideal.

• If R is a finitely generated commutative F -algebra, then dimR = trdegF Frac(R).

(1) Show that if F is algebraically closed and m ⊆ F [x1, . . . , xn] is a maximal ideal, then
m = mc1,...,cn for some ci ∈ F .

(2) Give a counterexample to the previous point if F is not algebraically closed.

Solution.

(1) [10 pts] Let R = F [x1, . . . , xn]
/
m, then R is a finitely generated commutative F -algebra,

as it is a quotient of a polynomial ring over F in finitely many variables. Note that as
m is maximal, R is a field, and that the structure of R as an F -algebra is given by the
inclusion ι : F → R, defined by ι(c) := c + m ∈ R for all c ∈ F (it is injective because
field morphisms are injective). As R is a field, the only prime ideal is (0), and thus

0 = dimR = trdegF R

where we used Frac(R) = R ([5 pts] for proving that R/F is a field extension with

trdegF R = 0). Hence F
ι
↪→ R is an algebraic extension. So as F is algebraically closed,

it must be the trivial extension, i.e. ι is an isomorphism [2 pts]. For 1 ≤ i ≤ n, let
ci := ι−1(xi +m) ∈ F . Then by definition

ci +m = ι(ci) = xi +m =⇒ xi − ci ∈ m

for all 1 ≤ i ≤ n, and thus mc1,...,cn ⊆ m. But then as mc1,...,cn is maximal and m is a
proper ideal, we obtain mc1,...,cn = m [3 pts].

(2) [6 pts]: 3 pts for giving a right counterexample and 3 pts for its justification Take F = R
and m = (x2+1) ⊆ R[x]. Notice that x2+1 ∈ R[x] is irreducible, because it is a quadratic
polynomial without roots (and if it were a product of smaller degree polynomials, i.e. of
degree 1, it would have to have real roots). Thus as R[x] is a PID, m is a maximal ideal.
But two ideals (f) and (g) in R[x] are equal if and only if f and g differ by a unit, and so
in particular f and g must have the same degree. Hence m isn’t of the form mc for any
c ∈ R.
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Exercise 3
[
16 pts

]
(1) Let R be an arbitrary ring. Show that given a short exact sequence of R-modules

0 //M ′ //M //M ′′ // 0,

such that M ′ and M ′′ have finite length over R, the following equality holds:

lengthRM = lengthRM
′ + lengthRM

′′

(2) If F is a field, and f ∈ F [x] is a polynomial that is a product of n > 0 irreducible

polynomials, then lengthF [x]

(
F [x]

/
(f)

)
= n.

Solution.

(1) [8 pts] Let l′ = lengthRM
′, l′′ = lengthRM

′′ and l := l′ + l′′. Also, let 0 = M ′0 ⊆ · · · ⊆
M ′l′ = M ′ and 0 = M ′′l′ ⊆ · · · ⊆ M ′′l = M ′′ be composition series. By replacing M ′ with
its image inside M we may assume that M ′ ⊆ M , and then we may also replace M ′′ by
M
/
M ′. Let π : M �M ′′ be the natural projection map. Now for 0 ≤ i ≤ l, define

Mi :=

{
M ′i if i ≤ l′

π−1(M ′′i ) if i ≥ l′.

This is well defined because M ′l′ = M ′ = π−1(0) = π−1(M ′′l′ ). It is then also clear that
M0 = 0, Ml = M and Mi ⊆ Mi+1 for all i < l ([4 pts] For constructing a composition
series for M out of compositions series of M ′,M ′′, including valid justifications on how the

contruction works.). Now if i < l′ then Mi+1
/
Mi = M ′i+1

/
M ′i is simple, and if l′ ≤ i < l,

then

Mi+1
/
Mi
∼= Mi+1

/
M ′
/
Mi
/
M ′ =

π(Mi+1)
/
π(Mi) = M ′′i+1

/
M ′′i

is simple as well, where we used the 3rd isomorphism theorem and surjectivity of π. Hence
0 = M0 ⊆ · · · ⊆ Ml = M is a composition series for M ([4 pts] For justifying that the
proposed composition series is indeed a composition series, including the use of the 3rd
isomorphism theorem.), and thus

lengthRM = l = l′ + l′′ = lengthRM
′ + lengthRM

′′.

(2) [8 pts] We present two different solutions.

Solution 1. We proceed by induction on n. If n = 1, then f is irreducible, and thus

(f) ⊆ F [x] is maximal (as F [x] is a PID). As the F [x]-submodules of F [x]
/

(f) are in

one-to-one correspondence with the F [x]-submodules of F [x] containing (f), which by

maximality are precisely (f) and F [x], we obtain that F [x]
/

(f) is simple, and hence

lengthF [x]

(
F [x]

/
(f)

)
= 1 [2 pts]. Now assume the statement to be true for a fixed

n ∈ Z>0, and let f be a product of n+ 1 irreducible polynomials. Let p be an irreducible
factor of f and write f = pg where g is a product of n irreducible polynomials. Now as

the projection F [x] → F [x]
/

(g) has f in its kernel, we obtain an induced (surjective)
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map F [x]
/

(f)→ F [x]
/

(g), defined by h+(f) 7→ h+(g). Its kernel is precisely (g)
/

(f),

which is the image of the map F [x] → F [x]
/

(f) defined by h 7→ gh + (f). Notice that

the kernel of this latter map is precisely (p), because for all h ∈ F [x] we have

gh ∈ (f) ⇐⇒ f = gp | gh ⇐⇒ p | h ⇐⇒ h ∈ (p).

Hence we obtain an induced injective map F [x]
/

(p)→ F [x]
/

(f) with image precisely the

kernel of F [x]
/

(f)→ F [x]
/

(g). Hence we have a short exact sequence of F [x]-modules

0 // F [x]
/

(p) // F [x]
/

(f) // F [x]
/

(g) // 0,

([4 pts] for the construction of that exact sequence) and thus by point (1) and the induction
hypothesis it follows that

lengthF [x]

(
F [x]

/
(f)

)
= lengthF [x]

(
F [x]

/
(p)

)
+ lengthF [x]

(
F [x]

/
(g)

)
= n+ 1.

[2 pts]

Solution 2. [8 pts]: 4pts fot the construction of a normal series and 4 pts for its justifi-
cation Let p1, . . . , pn ∈ F [x] be irreducible such that f = p1 · · · pn. For 0 ≤ i ≤ n define

Mi :=

(∏
i≤j≤n pj

)/
(f) (where the empty product is taken to be equal to 1 by conven-

tion). Hence in particular M0 = (f)
/

(f) = 0 and Mn = (1)
/

(f) = F [x]
/

(f). Also,

it is clear that Mi ⊆ Mi+1 for all i < n. Furthermore, we have by the 3rd isomorphism
theorem

Mi+1
/
Mi
∼=
(∏

i+1≤j≤n pj

)/(∏
i≤j≤n pj

)
for all 0 ≤ i < n. Now the F [x]-submodules of

(∏
i+1≤j≤n pj

)/(∏
i≤j≤n pj

)
are

in one-to-one correspondence with the F [x]-submodules of
(∏

i+1≤j≤n pj

)
containing(∏

i≤j≤n pj

)
. That is, the ideals (g) ⊆ F [x] contained in

(∏
i+1≤j≤n pj

)
, containing(∏

i≤j≤n pj

)
. That is, up to multiplication by a unit, the polynomials g ∈ F [x] divisible

by
∏
i+1≤j≤n pj , dividing

∏
i≤j≤n pj . As a PID is a UFD, the polynomials satisfying this

are precisely
∏
i+1≤j≤n pj and

∏
i≤j≤n pj , up to multiplication by a unit. In conclusion,

the only submodules of

(∏
i+1≤j≤n pj

)/(∏
i≤j≤n pj

)
are the zero module and the mod-

ule itself, and thus Mi+1
/
Mi is simple. Hence 0 = M0 ⊆ · · · ⊆ Mn = F [x]

/
(f) is a

composition series of F [x]
/

(f), and thus we conclude lengthF [x]

(
F [x]

/
(f)

)
= n.
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Exercise 4
[
16 pts

]
We have learned during the course that for a an arbitrary ring R and for a short exact sequence
of co-chain complexes of R-modules

0 // F•
α• // G•

β• // H• // 0

there are R-module homomorphism δi : H i(H•)→ H i+1(F•) for every integer i, such that the
following long exact sequence is exact:

. . .
δi−1 // H i(F•)

Hi(α•) // H i(G•)
Hi(β•) // H i(H•)

δi // H i+1(F•)
Hi+1(α•)// . . .

Here, a short exact sequence of co-chain complexes means that α• and β• are co-chain mor-
phisms such that

0 // Fi
αi // Gi

βi // Hi
// 0

is exact for every i ∈ Z.

(1) Define δi.

(2) Show that δi are well defined R-module homomorphisms.

Solution.
We denote by fi : Fi → Fi+1, gi : Gi → Gi+1 resp. hi : Hi → Hi+1 the connecting morphisms.

The short exact sequence 0→ Fi
αi→ Gi

βi→ Hi → 0 will be called SESi.

(1) [6 pts]: 4pts for chasing z 7→ x and 2pts for showing x ∈ ker fi+1 δi has to be a map from
H i(H•) = kerhi

/
imhi−1 to H i+1(F•) = ker fi+1

/
im fi. So let z + imhi−1 ∈ H i(H•) be

arbitrary. By exactness of SESi, βi is surjective, and thus there exists y ∈ Gi such that
βi(y) = z. But then as z ∈ kerhi we have

βi+1(gi(y)) = hi(βi(y)) = hi(z) = 0.

Thus gi(y) ∈ kerβi+1 = imαi+1, where we used exactness of SESi+1. Thus there exists
x ∈ Fi+1 with αi+1(x) = gi(y). Notice that we then have

αi+2(fi+1(x)) = gi+1(αi+1(x)) = gi+1(gi(y)) = 0.

By exactness of SESi+2 this implies fi+1(x) = 0, and thus x ∈ ker fi+1. We then pose
δi(z + imhi−1) := x+ im fi ∈ H i+1(F•).

(2) [10 pts] To prove that δi is well-defined, we have to prove that the target element con-
structed in the previous point doesn’t depend on any of the choices involved [4 pts].
To do so, we follow the construction step by step. So let z, z′ ∈ kerhi be such that
z + imhi−1 = z′ + imhi−1. Then there exists c ∈ Hi−1 such that

z = z′ + hi−1(c).

Now as in the previous point, let y, y′ ∈ Gi be such that βi(y) = z and βi(y
′) = z′. Also,

by exactness of SESi−1, let b ∈ Gi−1 be such that βi−1(b) = c. We then have

βi(y) = βi(y
′) + hi−1(βi−1(b)) = βi(y

′) + βi(gi−1(b)).
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So by exactness of SESi, there exists a ∈ Fi such that

y = y′ + gi−1(b) + αi(a).

Finally, as in the previous point, let x, x′ ∈ Fi+1 be such that αi+1(x) = gi(y) and
αi+1(x

′) = gi(y). By applying gi to the above equation, we obtain

αi+1(x) = gi(y) = gi(y
′) + gi(gi−1(b))︸ ︷︷ ︸

=0

+gi(αi(a)) = αi+1(x
′) + αi+1(fi(a)).

By exactness of SESi+1, αi+1 is injective, and thus x = x′+fi(a). In particular, we obtain
x+ im fi = x′ + im fi. Thus δi is a well-defined set-map.

So it remains to prove that δi is R-linear. To this end, let z+imhi−1, z
′+imhi−1 ∈ H i(H•)

and r, r′ ∈ R be arbitrary, and let z′′ := rz + r′z′. We again follow the construction in
(1) step by step: first, let y, y′ ∈ Gi be such that βi(y) = z and βi(y

′) = z′, then
y′′ := ry + r′y′ ∈ Gi is such that βi(y

′′) = z′′. Now as in (1), there exist x, x′ ∈ ker fi
such that αi+1(x) = gi(y) and αi+1(x

′) = y′. So x′′ := rx + r′x′ ∈ ker fi is such that
αi+1(x

′′) = gi(y
′′). Hence, as δi is well-defined, we have

δi(r(z + imhi−1) + r′(z′ + imhi−1)) = δi(z
′′ + imhi−1) = x′′ + im fi =

= r(x+ im fi) + r′(x′ + im fi) = rδi(z + imhi−1) + r′δi(z
′ + imhi−1).

Thus δi is a morphism of R-modules [4 pts].
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Exercise 5
[
36 pts

]
Let R be a commutative ring.

In this exercise, you can use the following statements we proved throughout the course: if R is
Artinian, then

• every prime ideal of R is maximal, and

• lengthRR <∞.

This exercise is about the interplay between the notions Noetherian and Artinian for rings. To
help distinguishing between them, we set with bald font the appearances of the word Artinian.
Also, recall that you get maximum credit for solving any point of the exercise assuming the
statements of the previous points, even if you did not solve (all of) those previous points.

(1) Show that if R is Noetherian, m ⊆ R a maximal ideal, and I ⊆ R is an m-primary ideal,
then there is an integer j > 0 such that mj ⊆ I. Give a counterexample to this statement
when R is not Noetherian.

(2) Show that if j > 0 is an integer, m ⊆ R is a maximal ideal and R is Noetherian, then
R
/
mj is an Artinian local ring.

(3) Show that if R is Noetherian of dimension 0, then there exists and integer j > 0 and
maximal ideals m1, . . . ,ms of R such that

(0) =

s⋂
i=1

mj
i .

Deduce the ring isomorphism R ∼=
∏s
i=1Ri, where Ri are Artinian local rings.

(4) Show that if R is Artinian if and only if it is Noetherian and dimR = 0.

(5) Show that if R is Artinian, and T ⊆ R is a multiplicatively closed set, then T−1R is also
Artinian.

Solution.

(1) [8 pts] As R is Noetherian, there exist r1, . . . , rl ∈ R such that m = (r1, . . . , rl) [2 pts].
Now as

√
I = m, let N ∈ Z>0 be large enough such that rNk ∈ I for all 1 ≤ k ≤ l, and let

j := Nl+1 [2 pts]. Let x1, . . . , xj ∈ m be arbitrary, then there exist aik ∈ R for 1 ≤ i ≤ j
and 1 ≤ k ≤ l such that xi =

∑
k aikrk for all i. Then by expanding

x1 · · ·xj =

(∑
k

a1krk

)
· · ·

(∑
k

ajkrk

)
,

every summand has at least one ri which appears with an exponent greater than or equal
to N , and hence every summand is in I. Thus x1 · · ·xj ∈ I [2 pts] and

mj = (x1 · · ·xj | x1, . . . , xj ∈ m) ⊆ I.

As a counterexample for the case where R is not Noetherian, take R = F [xi | i ∈ Z>0] =
F [x1, x2, . . .] where F is a field, I = (x21, x

2
2, x

2
3, . . .) and m = (x1, x2, . . .). Notice that m

is maximal because R
/
m ∼= F is a field. Also, xi ∈

√
I for all i, and thus as

√
I is a

proper ideal we have m =
√
I, i.e. I is m-primary (as m is maximal). Finally, suppose
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by contradiction that mj ⊆ I for some j > 0. Then in particular x1 · · ·xj ∈ I, and thus
there exists elements a1, . . . , al ∈ R such that

x1 · · ·xj = a1x
2
1 + · · ·+ alx

2
l .

This is a contradiction, as no term of the form akx
2
k can contain the monomial x1 · · ·xj

with non-zero coefficient [2 pts].

(2) [8 pts] We will make heavy use of the following elementary fact that was used several
times either explicitly or implicitly throughout the course:

Fact. Let R be a commutative ring and I ⊆ R and ideal.

• If M is an R-module such that I ⊆ AnnR(M), then M naturally has the structure
of an R

/
I-module (via the formula (r+ I)m := rm), and the R

/
I-submodules of M

are precisely the R-submodules.

• If M is an R
/
I-module, then it has naturally the structure of an R-module (via

the formula rm := (r + I)m) with I ⊆ AnnR(M), and the R-submodules of M are
precisely the R

/
I-submodules.

• The constructions of the two previous points are mutually inverse.

The proofs are almost tautological. As a consequence of the above, if M is an R-module
with I ⊆ AnnR(M), or an R

/
I-module, then lengthR(M) = lengthR/I(M), simply be-

cause the submodules stay the same. For the same reason, R
/
I is Artinian/Noetherian

as an R-module if and only if it is Artinian/Noetherian as a ring.

Now to the exercise; we proceed by induction on j. If j = 1, then as m ⊆ R is maximal,
R
/
m is a field, and thus in particular an Artinian local ring [2 pts]. Now assume the

statement to be true for a fixed j ∈ Z>0. Notice that the natural surjection R � R
/
mj

has mj+1 in its kernel, and thus induces a surjection R
/
mj+1 � R

/
mj defined by

r +mj+1 7→ r +mj . Thus the kernel is precisely mj
/
mj+1, and we obtain a short exact

sequence of R-modules [2 pts]

0→ mj
/
mj+1 → R

/
mj+1 → R

/
mj → 0.

Now as Noetherianity is stable under taking submodules and quotients, m
j
/
mj+1 is a

Noetherian R-module. Also, notice that m ⊆ AnnR

(
mj
/
mj+1

)
, and thus it naturally

has the structure of a Noetherian k := R
/
m-module. As k is a field, we thus have that

mj
/
mj+1 is a Noetherian k-vector space, i.e. a finite dimensional k-vector space. But

thus it is also an Artinian k-vector space, and so it is also Artinian as an R-module.

Consequently, as both mj
/
mj+1 and R

/
mj are Artinian R-modules, R

/
mj+1 is an

Artinian R-module as well, and hence also an Artinian ring [2 pts].

It remains to see that R
/
mj+1 is local [2 pts]. The prime ideals of R

/
mj+1 are in one-

to-one correspondence with the prime ideals of R containing mj+1. But a prime ideal
containing mj+1 must contain m (if it doesn’t contain x ∈ m then it neither contains
xj+1 ∈ mj+1 by the primality condition). Hence the only prime ideal of R

/
mj+1 is

m/mj+1, and thus it is a local ring.

(3) [8 pts] As R is Noetherian, primary decompositions exist. So let (0) =
⋂s
i=1 Ii be a

primary decomposition of the trivial ideal. As R is of dimension 0, every prime ideal of
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R is maximal, and thus mi :=
√
Ii is maximal for 1 ≤ i ≤ s. By point (1), there exists

j > 0 such that mj
i ⊆ Ii for all 1 ≤ i ≤ s, and thus

(0) =

s⋂
i=1

mj
i ⊆

s⋂
i=1

Ii = (0),

hence
⋂s
i=1m

j
i = (0) [4 pts].

To conclude this part of the exercise, we would like to use the Chinese remainder theorem.
To this end, we have to prove that mj

1, . . . ,m
j
s are pairwise coprime. Let i 6= i′, then by

maximality there exist x ∈ mi and x′ ∈ mi′ such that x+ x′ = 1. Thus we also have

1 = (x+ x′)2j =
∑

0≤l≤2j

(
2j

l

)
xl(x′)2j−l.

So if y :=
∑

j≤l≤2j
(
2j
l

)
xl(x′)2j−l and y′ :=

∑
0≤l<j

(
2j
l

)
xl(x′)2j−l then y ∈ mi and y′ ∈ mi′

are such that y + y′ = 1. Hence mj
1, . . . ,m

j
s are pairwise coprime, and thus by the CRT

we have

R ∼= R
/⋂s

i=1m
j
i

CRT∼= R
/
mj
i
.

Finally, by point (2), Ri := R
/
mj
i

is an Artinian local ring for all 1 ≤ i ≤ s, so we are
done [4 pts].

(4) [8 pts] If R is Artinian, then by the statement in the beginning of the exercise we have
lengthRR < ∞, so R is also Noetherian. Furthermore, as every prime ideal of R is
maximal, we have dimR = 0, so we already proved the ’only if’ implication [4 pts].

To prove the reverse implication [4 pts], let R be a Noetherian ring of dimension 0. By
point (3), we have a ring isomorphism R ∼=

∏s
i=1Ri such that R1, . . . Rs are Artinian

local rings. So to conclude, it remains to see that a product of Artinian rings is Artinian.
Notice that if I ⊆

∏s
i=1Ri is an ideal and Ii′ ⊆ Ri′ its contraction under the inclusion

Ri′ →
∏s
i=1Ri, then I =

∏s
i=1 Ii. Indeed, denote by ei′ ∈

∏s
i=1Ri the vector whose

components are all zero except for the i′-th component which is equal to 1. Then if
(x1, . . . , xs) ∈ I, we have (0, . . . , 0, xi′ , 0, . . . , 0) = ei′ · (x1, . . . , xs) ∈ I, and thus xi′ ∈ Ii′ ,
which proves (x1, . . . , xs) ∈

∏s
i=1 Ii. On the other hand, if (y1, . . . , ys) ∈

∏s
i=1 Ii is

arbitrary, then as yi′ ∈ Ii′ it follows that ei′(y1, . . . , ys) ∈ I. Hence

(y1, . . . , ys) =
s∑
i=1

ei(y1, . . . , ys) ∈ I.

So we indeed have I =
∏s
i=1 Ii.

Now let (Il)l∈Z>0 be a decreasing sequence of ideals of
∏s
i=1Ri. Write Il =

∏s
i=1 Ili for

all l > 0, then for all 1 ≤ i ≤ s we have that (Ili)l∈Z>0 is a decreasing sequence of ideals
of Ri. As all the Ri’s are Artinian, we can choose L > 0 large enough such that Ili = ILi
for all l ≥ L and 1 ≤ i ≤ s. Hence Il = IL for all l ≥ L, i.e. (Il)l∈Z>0 stabilizes. So we
conclude that R ∼=

∏s
i=1Ri is Artinian.

(5) [4 pts] Let (Jl)l∈Z>0 be a decreasing sequence of ideals of T−1R. Then (Jcl )l∈Z>0 is a
decreasing sequence of ideals of R and thus it stabilizes, i.e. there exists L > 0 such that
Jcl = JcL for all l ≥ L. Hence Jl = Jcel = JceL = JL for all l ≥ L, i.e. (Jl)l∈Z>0 stabilizes.
Hence T−1R is Artinian.
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