Rings and modules (MATH-311) Final exam — Solutions

Rings and modules (vatr-311y — Final exam — Solutions
29 January 2022, 8 h 15-11 h 15

The exam consisted of five exercises. The first four were worth 16 points each and the last one
was worth 36 points. So there was a total of 100 points in the exam. It was possible to solve any
point of an exercise assuming the statements of the previous points, even if not all of those were
solved. Also, a partial solution to a point gives partial credit.
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Exercise 1 | 16 pts |

In the next exercise you can use without proof the following statement: let v : A — B and
£: A — C be two R-module homomorphisms and assume that v is surjective. Then:

¢ € imHomp(y,C) <= ker{ D kervy

(1) Show that for an arbitrary ring R and an R-module N, the functor Homp(_, N) is left
exact, which means (by definition) that for every short exact sequence of R-modules

0 L2k 0

the following sequence is exact

Hom g (a,N) Hom g(5,N)
-~ -~

Homp(L, N)

Homp(M, N) Homp(K, N)

(2) Give an example where Homp(a, N) in the above sequence is not surjective.

Solution.

(1) [10 pts] We call SES the short exact sequence 0 — L = M 5 K — 0. We want to show
that Homp(SES, N) is exact at Hompg(K, N) and Hompg(M, N). Note that Hompg(a, N)
resp. Homp(B, N) are just precomposition by « resp. .

FEzactness at Homp (K, N): [5 pts] We want to show that the kernel of Hompg(5,N)
is equal to the image of 0 — Hompg(K, N), i.e. that Hompg(83, N) is injective. Let
¢ € ker Homp(5, N) be arbitrary, i.e. ¢ o8 = 0. Then im S C ker ¢, but by exactness of
SES at K we have that im 8 = K. Thus ¢ = 0, and we conclude ker Hompg(3, N) = 0.
This proves exactness at Homp (K, N).

Ezactness at Homp (M, N): [5 pts| Notice that as Hompg(_, N) is a contravariant functor
we have
Hompg(a, N) o Hompg(5, N) = Homg(Boa, N) =0
——
=0
where for the last equality we used that precomposition by the zero-map is the zero-
map. Hence im Homp(8, N) C ker Homp(«, N) [2 pts], so it remains to show the reverse

inclusion. Let ¢ € ker Hompg(«, N) be arbitrary, i.e. 1) o @ = 0. By exactness of SES at
M, we obtain

ker 8 S ima C ker 1.

As 8 : M — K is surjective, the statement in the beginning of the exercise implies that ¢ €
imHompg(B, N). As ¢ € ker Hompg(a, N) was arbitrary, we conclude im Hompg(5, N) 2
ker Homp(a, N) [3 pts], and thus im Hompg (8, N) = ker Hompg(a, N).

(2) [6 pts]: 3 pts for giving a right counterexample and 3 pts for its justification We take
R=L=M-=N=%7Z,K = Z/QZ,a:L—>Mmu1tiplicationby2, and 8 : M - K

the natural projection map. Then 0 — L = M E) K — 0 is clearly exact. Now consider
idz € Hompg(L, N) and suppose by contradiction that there exists ¢ € Hompg(M, N) with
idz = Hompg(a, N)(¢), i.e. idz = ¢ o a. Then

1 =idz(1) = ¥(a(1)) = ¥(2) = 2¢(1).

This is a contradiction as 1 is odd. So Hompg(«, V) isn’t surjective.
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Exercise 2 | 16 pts |
Let F be a field.
In this exercise you can use without proof the following:
o forc; € F, the ideal me,, . ¢, = (x1—c1,...,2n —¢n) C Flx1,..., 2] is a mazimal ideal.
e If R is a finitely generated commutative F-algebra, then dim R = trdegy Frac(R).

(1) Show that if F' is algebraically closed and m C F[z1,...,x,] is a maximal ideal, then
m = Me,,...c, fOr some ¢; € F.

(2) Give a counterexample to the previous point if F' is not algebraically closed.

Solution.

(1) [10 pts] Let R = Flzy,... 735n]/m, then R is a finitely generated commutative F-algebra,
as it is a quotient of a polynomial ring over F' in finitely many variables. Note that as
m is maximal, R is a field, and that the structure of R as an F-algebra is given by the
inclusion ¢ : F' — R, defined by ¢(c) := ¢+ m € R for all ¢ € F (it is injective because
field morphisms are injective). As R is a field, the only prime ideal is (0), and thus

0 =dim R = trdegp R

where we used Frac(R) = R ([5 pts| for proving that R/F is a field extension with
trdeg; R = 0). Hence F < Ris an algebraic extension. So as F' is algebraically closed,
it must be the trivial extension, i.e. ¢ is an isomorphism [2 pts]. For 1 < i < n, let
c¢i =1 1 (x; + m) € F. Then by definition

ci+m=1ug)=x,+m = x;—c;iEM

for all 1 <4 < n, and thus m,,, ., € m. But then as me, . ., is maximal and m is a
proper ideal, we obtain me, ., =m [3 pts|.

(2) [6 pts]: 3 pts for giving a right counterexample and 3 pts for its justification Take F' = R
and m = (22 +1) C R[z]. Notice that 22 +1 € R[z] is irreducible, because it is a quadratic
polynomial without roots (and if it were a product of smaller degree polynomials, i.e. of
degree 1, it would have to have real roots). Thus as R[z| is a PID, m is a maximal ideal.
But two ideals (f) and (g) in R[z] are equal if and only if f and g differ by a unit, and so
in particular f and g must have the same degree. Hence m isn’t of the form m, for any
ceR.
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Exercise 3 | 16 pts |

(1) Let R be an arbitrary ring. Show that given a short exact sequence of R-modules

0 M’ M M" 0,

such that M’ and M" have finite length over R, the following equality holds:

lengthp M = lengthp M’ + lengthp M”

(2) If F is a field, and f € F[z] is a polynomial that is a product of n > 0 irreducible
polynomials, then lengthF[m] (F[ff]/(f)> =n.

Solution.

(1) [8 pts] Let I' = lengthr M', I"” = lengthp M" and [ := I’ +1". Also, let 0 = My C --- C
M, = M and 0 = M) C --- € M/’ = M" be composition series. By replacing M’ with
its image inside M we may assume that M’ C M, and then we may also replace M" by
M/M/. Let m: M — M" be the natural projection map. Now for 0 < ¢ < [, define

M, = M! ifi <l
Y (M) ifi >

This is well defined because M), = M’ = n=1(0) = 7' (M]/). It is then also clear that
My =0, M; = M and M; C M;; for all i <[ ([4 pts| For constructing a composition
series for M out of compositions series of M’, M”, including valid justifications on how the
contruction works.). Now if ¢ < I’ then Mi+1/Mi 1+1/M/ is simple, and if I’ <14 < [,
then

Miy1 )y, = i+1/M’/Mi/M/ = W(Miﬂ)/ = H—l/M”

is simple as well, where we used the 3rd isomorphism theorem and surjectivity of 7. Hence
0=MyC---C M = M is a composition series for M ([4 pts] For justifying that the
proposed composition series is indeed a composition series, including the use of the 3rd
isomorphism theorem.), and thus

lengthp M =1 =1 +1" =lengthy M’ + length, M".

(2) [8 pts| We present two different solutions.

Solution 1. We proceed by induction on n. If n = 1, then f is irreducible, and thus
(f) € Flz| is maximal (as Fz] is a PID). As the F[z]-submodules of F[x]/(f) are in
one-to-one correspondence with the F'[x]-submodules of F[x] containing (f), which by

maximality are precisely (f) and F[z], we obtain that £ [z] / (f) is simple, and hence

length <F[$]/(f)> = 1 [2 pts]. Now assume the statement to be true for a fixed

n € Zso, and let f be a product of n+ 1 irreducible polynomials. Let p be an irreducible
factor of f and write f = pg where g is a product of n irreducible polynomials. Now as

the projection Flz] — F[z] / (g) has f in its kernel, we obtain an induced (surjective)
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map F[:):]/(f) — F[x]/(g), defined by h+ (f) — h+(g). Its kernel is precisely (9)/(f),

which is the image of the map F[z] — F[x]/(f) defined by h + gh + (f). Notice that
the kernel of this latter map is precisely (p), because for all h € F[z] we have

ghe(f) <= f=gplgh < p|h < he(p).

Hence we obtain an induced injective map F/[z] / (p) — Flz] / (f) with image precisely the
kernel of F'[z] / f) —~ Flx] / (g)- Hence we have a short exact sequence of F[z]-modules

0—— Fla] /() — Flal /() — Fla] /(g) —0,

([4 pts] for the construction of that exact sequence) and thus by point (1) and the induction
hypothesis it follows that

length () (F[x]/(f)) = length g, (F[x]/(p)> + lengthpy) (F[w]/(g)) =n+ 1.

[2 pts]

Solution 2. [8 pts|: 4pts fot the construction of a normal series and 4 pts for its justifi-
cation Let pi,...,p, € Flx] be irreducible such that f = pj---p,. For 0 < i < n define

M; = (Higjgn Pg)/(f) (where the empty product is taken to be equal to 1 by conven-
tion). Hence in particular My = (f)/(f) =0 and M, = (1)/(]”) = F[x]/(f) Also,

it is clear that M; C M,y for all i < n. Furthermore, we have by the 3rd isomorphism
theorem

Mit1/pp, = <Hi+1§j§npj)/(ni§j§npj)

for all 0 < i < n. Now the Fl[z]-submodules of (Hi+1§j§npj)/(ni<j<npj) are
in one-to-one correspondence with the F[z]-submodules of <HZ +1<j<n pj) containing

(Higjgnpj>- That is, the ideals (¢) C Fz]| contained in (Hi+1§j§npj>v containing
(HK i<n pj>. That is, up to multiplication by a unit, the polynomials g € F[z] divisible

by [;11<j<npj, dividing [[,<;<,, pj. As a PID is a UFD, the polynomials satisfying this
are precisely [, +1<j<nPj and Hz‘g j<nPjs up to multiplication by a unit. In conclusion,

the only submodules of (Hz‘+1§j§n Pj)/(l‘[i<j<n pj) are the zero module and the mod-

ule itself, and thus Mi+1/Mi is simple. Hence 0 = My C --- C M,, = F[iU]/(f) is a

c M,
composition series of F[7] / (f): and thus we conclude length, <F (2] / ( f)) =n.
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Exercise 4 | 16 pts |

We have learned during the course that for a an arbitrary ring R and for a short exact sequence
of co-chain complexes of R-modules

Be

(673

0 F, Ge H, 0

there are R-module homomorphism &; : H'(Hy) — HY(Fy) for every integer i, such that the
following long exact sequence is exact:

di—1 Hi(aw) H'(Bs) d; H" ' (aa)

H'(F,) H'(G.) H'(H,) H™Y(E,)

Here, a short exact sequence of co-chain complexes means that ae and Be are co-chain mor-
phisms such that

is exact for every i € 7.
(1) Define ;.
(2) Show that §; are well defined R-module homomorphisms.

Solution.
We denote by f; : F; — Fit1, gi : Gi — Gjiy1 resp. h; : H; — H;41 the connecting morphisms.

The short exact sequence 0 — F; X G; ’84 H; — 0 will be called SES,;.

(1) [6 pts|: 4pts for chasing z — z and 2pts for showing x € ker f;+1 J; has to be a map from
Hi(H,) = kerhi [y, | to HYH(F,) = ket fit1 /iy f,. So let z +imh;_y € H'(H,) be
arbitrary. By exactness of SES;, 3; is surjective, and thus there exists y € G; such that
Bi(y) = z. But then as z € ker h; we have

Bi+1(9i(y)) = hi(Bi(y)) = hi(z) = 0.

Thus g;(y) € ker 8;+1 = im a;+1, where we used exactness of SES;;1. Thus there exists
x € Fitq1 with a11(z) = gi(y). Notice that we then have

iy2(fir1(2)) = giv1(air1(x)) = giv1(gi(y)) = 0.

By exactness of SES; 2 this implies f;11(x) = 0, and thus = € ker f;11. We then pose
52‘(2 + im hi—l) =z +imf; € Hi+1(F.).

(2) [10 pts] To prove that ¢; is well-defined, we have to prove that the target element con-
structed in the previous point doesn’t depend on any of the choices involved [4 pts].
To do so, we follow the construction step by step. So let 2,2’ € kerh; be such that
z-+imh;_1 = 2’ +imh;_1. Then there exists ¢ € H;_1 such that

z = ZI + hi_l(c).

Now as in the previous point, let y,3’ € G; be such that §;(y) = z and S;(y’) = 2’. Also,
by exactness of SES;_1, let b € G;_1 be such that 8;_1(b) = ¢. We then have

Bi(y) = Bi(y') + hi—1(Bi—1(b)) = Bi(y') + Bi(gi-1(D)).

29 January 2022 EPFL, final exam, MATH-311, Solutions 6/10



So by exactness of SES;, there exists a € F; such that
y =19 +gi-1(b) + ai(a).

Finally, as in the previous point, let z,2’ € F;;; be such that a;11(z) = gi(y) and
a;+1(2") = gi(y). By applying g; to the above equation, we obtain

air1(z) = gi(y) = gi(y') + gi(9i-1(b)) +gi(ei(a)) = aip1(z)) + i1 (fi(a).
=0

By exactness of SES; 11, ;41 is injective, and thus x = '+ f;(a). In particular, we obtain
x +im f; = 2’ +im f;. Thus §; is a well-defined set-map.

So it remains to prove that §; is R-linear. To this end, let z+im h; 1, 2/+im h;_y € H'(H,)
and r,7’ € R be arbitrary, and let 2" := rz + r’2’. We again follow the construction in
(1) step by step: first, let y,3' € G; be such that §;(y) = z and B;(y') = 2/, then
y" :=ry+ 1y € G; is such that 5;(y”) = 2”. Now as in (1), there exist z,z" € ker f;
such that a;41(z) = gi(y) and a;1(2’) = 3/. So a” = ra + 1’2’ € ker f; is such that
a;ir1(2") = g;(y"). Hence, as §; is well-defined, we have

= (51'(2// +im hi—l) =" +im fz —

8i(r(z +imh;—1) +r'(2' +imh;_1))
ré;(z +imh;_1) +r'6; (2 +imh;_1).

= r(e+im f;) + /(2 +im f;) =

Thus 6; is a morphism of R-modules [4 pts].
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Exercise 5 | 36 pts |
Let R be a commutative ring.

In this exercise, you can use the following statements we proved throughout the course: if R is
Artinian, then

e cvery prime ideal of R is maximal, and
e lengthp R < oo.

This exercise is about the interplay between the notions Noetherian and Artinian for rings. To
help distinguishing between them, we set with bald font the appearances of the word Artinian.
Also, recall that you get maximum credit for solving any point of the exercise assuming the
statements of the previous points, even if you did not solve (all of ) those previous points.

(1) Show that if R is Noetherian, m C R a maximal ideal, and I C R is an m-primary ideal,
then there is an integer j > 0 such that m’/ C I. Give a counterexample to this statement
when R is not Noetherian.

(2) Show that if j > 0 is an integer, m C R is a maximal ideal and R is Noetherian, then
R/mj is an Artinian local ring.

(3) Show that if R is Noetherian of dimension 0, then there exists and integer j > 0 and
maximal ideals mq, ..., ms of R such that

Deduce the ring isomorphism R = [[7_; R;, where R; are Artinian local rings.
(4) Show that if R is Artinian if and only if it is Noetherian and dim R = 0.

(5) Show that if R is Artinian, and 7' C R is a multiplicatively closed set, then T~ R is also
Artinian.

Solution.

(1) [8 pts] As R is Noetherian, there exist r1,...,r € R such that m = (r1,...,r;) [2 pts].
Now as VI =m, let N € Zsg be large enough such that r,iv e€lforalll <k<lI, and let
J = NIl+1[2pts|. Let z1,...,x; € m be arbitrary, then there exist a;; € Rfor1 <i <j
and 1 <k <[ such that x; = ), a7 for all . Then by expanding

every summand has at least one r; which appears with an exponent greater than or equal
to N, and hence every summand is in /. Thus z1---2; € I [2 pts] and

mj:(wl...xj’xl,...,ijm)QI.

As a counterexample for the case where R is not Noetherian, take R = Flz; | i € Zsg] =
Flz1,29,...] where F is a field, I = (2},23,23,...) and m = (21,22, ...). Notice that m
is maximal because R/ m = F is a field. Also, x; € VT for all 7, and thus as VT is a
proper ideal we have m = /I, i.e. I is m-primary (as m is maximal). Finally, suppose
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by contradiction that m? C I for some j > 0. Then in particular z; - - -xj € I, and thus
there exists elements aq,...,q; € R such that

2 2
T1---xj =017+ -+ axy.

This is a contradiction, as no term of the form akx% can contain the monomial 1 - - - z;
with non-zero coefficient [2 pts|.

(2) [8 pts] We will make heavy use of the following elementary fact that was used several
times either explicitly or implicitly throughout the course:

Fact. Let R be a commutative ring and I C R and ideal.

e If M is an R-module such that I C Anng(M), then M naturally has the structure
of an R/r-module (via the formula (r 4+ I)m := rm), and the 12/ -submodules of M
are precisely the R-submodules.

e If M is an R/ J-module, then it has naturally the structure of an R-module (via
the formula rm := (r + I)m) with I C Anng(M), and the R-submodules of M are
precisely the R / J-submodules.

e The constructions of the two previous points are mutually inverse.

The proofs are almost tautological. As a consequence of the above, if M is an R-module
with I C Anng(M), or an B/r-module, then lengthy(M) = lengthp, (M), simply be-
cause the submodules stay the same. For the same reason, & / I is Artinian/Noetherian
as an R-module if and only if it is Artinian/Noetherian as a ring.

Now to the exercise; we proceed by induction on j. If j = 1, then as m C R is maximal,
R/ m is a field, and thus in particular an Artinian local ring [2 pts|. Now assume the
statement to be true for a fixed j € Z~(. Notice that the natural surjection R — R / mJ
has m?T! in its kernel, and thus induces a surjection R/mj+1 —» R/mj defined by

r+m?Tt — r 4+ mJ. Thus the kernel is precisely m? / mJt1, and we obtain a short exact

sequence of R-modules [2 pts]

0 mj/mj+1 — R/ppitt = R/pi 0.

Now as Noetherianity is stable under taking submodules and quotients, m? / mitl is a

Noetherian R-module. Also, notice that m C Annpg (mj / mj+1>, and thus it naturally
has the structure of a Noetherian k := I / m-module. As k is a field, we thus have that
mJ / mJT1 is a Noetherian k-vector space, i.e. a finite dimensional k-vector space. But
thus it is also an Artinian k-vector space, and so it is also Artinian as an R-module.
Consequently, as both m? / mJ+1 and R/mj are Artinian R-modules, R/mj+1 is an

Artinian R-module as well, and hence also an Artinian ring [2 pts].

It remains to see that R/mj+1 is local [2 pts]. The prime ideals of R/mj+1 are in one-
to-one correspondence with the prime ideals of R containing m’*!. But a prime ideal
containing m/T! must contain m (if it doesn’t contain 2 € m then it neither contains
271 € m/*! by the primality condition). Hence the only prime ideal of B/;pi+1 is
m/mi+1, and thus it is a local ring.

(3) [8 pts] As R is Noetherian, primary decompositions exist. So let (0) = ();_; i be a
primary decomposition of the trivial ideal. As R is of dimension 0, every prime ideal of
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R is maximal, and thus m; := V/I; is maximal for 1 < i < s. By point (1), there exists
j > 0 such that m] C I; for all 1 <i < s, and thus

S S

(@zﬂmfgﬂhz(m,

i=1 i=1
hence (;_, m? = (0) [4 pts].

To conclude this part of the exercise, we would like to use the Chinese remainder theorem.

To this end, we have to prove that m{, ..., m} are pairwise coprime. Let i # i/, then by

maximality there exist x € m; and 2’ € my such that x + 2’ = 1. Thus we also have
, 2j .
1= N2j _ [y 2jfl.
0<1<2j

Soify: =3 <1< (QZj)xl(:c’)2j_l and ¢/ := ZOSl<j (%j)xl(x’)%_l then y € m; and y' € my

are such that y 4+ 3 = 1. Hence m],...,m} are pairwise coprime, and thus by the CRT
we have
. CRT .
R= R/ﬂle m} = R/mf
Finally, by point (2), R; := R / mz is an Artinian local ring for all 1 < i < s, so we are

done [4 pts].

(4) [8 pts] If R is Artinian, then by the statement in the beginning of the exercise we have
lengthp R < oo, so R is also Noetherian. Furthermore, as every prime ideal of R is
maximal, we have dim R = 0, so we already proved the ’only if’ implication [4 pts|.

To prove the reverse implication [4 pts], let R be a Noetherian ring of dimension 0. By
point (3), we have a ring isomorphism R = [[7_; R; such that Ry,... R, are Artinian
local rings. So to conclude, it remains to see that a product of Artinian rings is Artinian.
Notice that if I C []7_; R; is an ideal and I; C Ry its contraction under the inclusion
Ry — T[;_; Ri, then I = [[;_, I;. Indeed, denote by ey € [[;_; R; the vector whose
components are all zero except for the i’-th component which is equal to 1. Then if
(x1,...,xs) € I, we have (0,...,0,24,0,...,0) =ey - (z1,...,25) € I, and thus zy € Iy,
which proves (z1,...,25) € [[;_; ;. On the other hand, if (y1,...,ys) € [[;_y L is
arbitrary, then as yy € I it follows that ey (y1,...,ys) € I. Hence

s

(ylu"'7y8) :Zei(yla”'vys) EI

i=1
So we indeed have I =[[_; I;.

Now let (I;)ez., be a decreasing sequence of ideals of [[;_; R;. Write I; = [[;_, I;; for
all [ > 0, then for all 1 < i < s we have that (Ili)lez>0 is a decreasing sequence of ideals
of R;. As all the R;’s are Artinian, we can choose L > 0 large enough such that I;; = I;
forall ! > L and 1 <i <s. Hence [; = I, for all [ > L, i.e. (I})icz., stabilizes. So we
conclude that R = [[7_; R; is Artinian.

(5) [4 pts] Let (J;)iez., be a decreasing sequence of ideals of T~'R. Then (Jf)ez., is a
decreasing sequence of ideals of R and thus it stabilizes, i.e. there exists L > 0 such that
Jf = Jj for all 1 > L. Hence J; = J° = Ji® = Jp for all | > L, i.e. (J})ez., stabilizes.
Hence T~ 'R is Artinian.
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