SOLUTIONS FOR THE EXAM RINGS AND MODULES (MATH-311) FINAL
(18.01.2021, 16:15-19:15)

The exam consist of 5 exercises, each exercise is worth 20 points and the total worth of the
exam is 100 points.



Exercise 1 (20 points).
Does R = Clz, 3/]/(5557 y7) have finite length (as a module over itself)? If not, then prove it. If
yes, then compute its length.

Proof. First we note that since R is a 35-dimensional vector-space over C (a basis is given by
x'y? for 0 < i <4 and 0 < j < 6) it is of finite length equal to 35 as a C-vectorspace. We claim
that it is easy to see that this implies that R is of finite length as an R-module. To this end let

0=LhCch<C--ChL1C,=R

be a strictly increasing chain of ideals in R. By definition, this defines a strictly increasing
sequence of C-vectorspaces. By exercise sheet 2, exercise 4 (3) this implies that n < 35.

A correct proof that R has finite length has been awarded with 10 points

We now construct a composition series of R as follow:

0=(2°7") ¢ (@) < (#9") & - < (2"9)

It is evident that (z,y) € Ann(M;/M,;_1) for all i (in fact the way to come up with the
above series is to make sure that zM; C M;_1 and yM; C M;_; in each step), in particular
Ann(M;/M;1) is a maximal ideal and hence the quotients M; /M, are simple for all i. The
above is a composition series with all quotients isomorphic to R/(z,y) = C. Note that also the
fact that the chain has length 35 directly implies that it has to be a composition series since if
the quotients where not simple the above chain could be extended to a chain with strictly more
terms, a contradiction to what was proven in the previous paragraph.

Providing a correct composition series gives 20 points (since in particular this implies that
R has finite length).

Grading Scheme 1.
The following has been applied when awarding points to incomplete or incorrect solutions:

e A correct proof that R has finite length has been awarded with 10 points

e A "proof" that R has finite length by means of providing an incorrect composition series
has been awarded 5 points



Exercise 2 (20 points). 1. Let p and ¢ be two prime ideals of a ring R. Show that S =
R\ (pUq) is a multiplicatively closed set of R. 5 points

Take R = Z from now, and S = Z\ ((2) U (3)).

2. Show that S~'R is a PID. 5 points
3. Find all the prime ideals of S™'R. 5 points

4. Find all the primary ideals of S~'R. 5 points

Proof. 1. We check that

e 1€ S, sincel¢pandl¢gq. 1 point

o if 5,7 € S then sr € S. This is true since s ¢ P and r ¢ P implies sr ¢ P for any
primeideal P. 4 points

2. We know that R = Z is a PID. By Prop. 6.3.9 (1) in the course notes every ideal of S~'R
is extended i.e., of the form S~!I for I an ideal of Z. Therefore, ST'R is a PID. 5 points

3. By Prop. 6.3.9 (4) there is a one to one correspondence between the primes of Z not
meeting S (i.e., the prime ideals fully contained in the set (2) U (3)) and the prime ideals
3

of S71Z. In particular, the prime ideals are 0, (%), (I) 5 points, -1 point for forgetting 0

4. We note that all non-zero prime ideals of S™1R are maximal (this is even true in Z). By
Prop. 7.5.3. and Prop. 7.5.7. this means that a non-zero ideal I in S~!'Z is primary if
and only if v/T is prime. We note that v/I = 0 iff I = 0. Therefore, the primary ideals

2k 3k E o
are 0, (T), (T) for all £ > 1. 5 points
O



Exercise 3 (20 points).
For a prime p > 2, set R = Fp[7] / (zP)- Compute for every integer ¢ > 0 the R-module

Bxtly (Folal / (1), Bolal / (22))

where Fp[7] / (;I;J) is endowed with an R-module structure via the natural surjection Fp (2] / (zP) =

Fp[x]/(xj) for j =1,2.

Proof. We construct a projective resolution of Fy,[z]/(z) as follow; the first term is the natural
surjection I, [x] /2P — [, [x]/(x) with kernel equal to the image of the multiplication by = map,
my : Fplz]/aP — Fplx]/2P. The kernel of m, is the image of mbt Fplx]/aP — Fplz]/«P
which has kernel equal to the image of m,. In particular we get the following infinite projective
resolution:

—1
My

M Byla)/a? T Fyla]/aP 2 Flz]/a?

We compute Extl, <IF‘p[x] / (x); Fp[z] / (5,52)) as the cohomology in degree i of the following

cocomplex
<o Hom(Fy[a] /2P, Fyl2]/a2) T2~ Hom(F[z] /2P, Fyl2] /%) <5 Hom(F[z]/a?, Fy[z]/2?)

Correct projective resolution gives 8 points

Recall that for any R module M there is a canonical isomorphism of R modules Hompg (R, M) =
M defined by f — f(1). Moreover, since p > 2, we have p — 1 > 2 and so for any f €
Hom(Fp[z] /2P, Fp[x]/2?) the compositin f o mge-1(1) = 2P~ f(1) = 0, in particular omge—1 is
the zero morphism. The above sequence is by these observations therefore canonically isomor-
phic (via the isomorphism f — f(1)) to the cocomplex:

- Fpla]/2? o Fplz]/a? <5 Fplz]/a?

Correct formulation of kernels and co-kernels gives additionally 6 points
We therefore have for ¢ odd:

Extj (Fp [] / (z), Fola] / (ﬁ)) = F,[2]/22 /2F,[z] /a? = Fplz]/z = F,
and for ¢ even
Extl, (Fp[l“]/(x), Fp[i]/(ﬁ)) = ker(my) = xF,[z]/z* = F,,.
To conclude, for all 7 > 0 we have Exté_—i (Fp[fU]/(@, Fp[x]/(xQ)) = IF,.

A correct conclusion for ¢ > 0 gives additionally 4 points
For ¢ = 0 we have by Proposition 4.3.8 that

Exth (Fplt] /(2), Folel / (22) ) = Homp (Folel /(). Fola] /(2.

Which is equal to ker(my) = 2Fp[z]/2* 2 F,. A correct calculation of i = 0 gives 2 points



Exercise 4 (20 points). 1. For a field k, we define R = k[z] as we defined F,[z] in Exercise
4 of Sheet 9. That is, k[z] is the set of formal power series Yoo, a;z’ where a; € k, and
addition and multiplication goes as it goes for polynomials. That is:

(So) o (S00) - St

1=0

(S50) (550) - £ (550

Show then that R is a PID. Describe the units of R and the prime elements of R.
10 points

and

2. Find a direct sum M of free cyclic R-modules and cyclic R-modules with prime power
annihilators such that M is isomorphic as an R-module to the quotient module

R&ERSR
R-(1+z,1,z) + R (z,2% 2%

_ R®R®R
- {T'(1+$,1,$)+S'(I',CL‘3,$4)‘T’,SER}

10 points

Proof. 1. The solution of Exercise 4 of Sheet 9, part a) translates word by word to this
setting. Ie., let f =ag + )50 an®" where ag # 0 define f~ =% bya™ where by = -
and b, = —% "4 ajbp—; for n > 1. This shows that all f € k[z] — () are 1nvert1ble.
A correct identification of the units gives 2 points
Now let I C k[z] be a non-trivial proper ideal, then I C (z) by what has just been said.
Every e € I is of the form x®r for some r € R — (x) (since we can wrire e = Y ;° a;z"’
and as # 0). Let s be minimal with respect to all such integers, then clearly I C (z*).
We want to show x® € I. By assumption there exists an r ¢ (x) such that rz® € I, but
all such r are invertible and hence »—!r2* € I. In conclusion every non-zero proper ideal
is of the form (z*) for some integer s > 1.

A correct argument showing R is a pid gives 7 points

If s > 2 this ideal is not prime since = ¢ (z®). Therefore, the only prime elements are 0
and x.

A correct identification of the prime elements gives 1 point

2. We are interested in the cokernel of the R-linear map

R®R — R®Ra&R
defined by

T 11,'3 LL’4

(r,5) = (r, 5) <1” L f”)

In order to solve the exercise we put the matrix into Smith normal form. In the first step
we switch the first and second column, by elementary row and column operations we get:

((1) x—:cg(zl + ) 8)



A correct computation of the Smith normal form gives 7 points (a minor miscalculation
in a otherwise correct set-up gives a subtraction of 2 points)

In particular, there are generators f1, fo, f3 that satisfies the relations
fi=0,(z—2®—ahfo=0.

Therefore,
M = k] /(x — 2® — 2*) @ k=] = k[2]/ (=) EP k[

where the last equality comes from the fact that 1 — 22 — 23 is invertible by the previous

exercise. A correct conclusion gives additionally 3 points (if the generator f3 is forgotten
then 2 points are subtracted)

O



Exercise 5 (20 points). 1. Show that if 0 # h € C[z,y] is a prime element, then Clz, y]/(h)
is not a field. 8 points

2. Show that if f € R is a (non-unit and non-zero) prime element of a Noetherian domain,
then the only prime ideal properly contained in (f) is (0) (in particular the height of (f)
is 1). 6 points

3. Show that if p C R is a height 1 prime ideal in a Noetherian UFD, then p = (g), where
g € R is a prime element. 6 points

Proof. 1. By Theorem 5.1.12 in the course notes it is sufficient to show that

trdeg ( C[m,y]/(h)) > 0.

In order to derive a contradiction suppose that the transcendence degree is zero, then
Clz,yl / (h) = C since C is algebraically closed. In particular, this implies that there

exists Az, Ay € C such that x — \; € (h) and y — A, € h. In particular, this means that
h|z — Az and h|y — A, but this is impossible unless & is a unit, a contradiction. A correct
solution gives 8 points, a promising but not complete solution gives 5 points, a promising
start of a solution gives 3 points

2. In order to arrive at a contradiction let p C (f) be a non-zero prime ideal.

Let 0 # g € p, then g € f hence there exists some r € R such that g = rf. Since p is
prime either » € p or f € p. If f € p then p = (f). Therefore, wlog we may assume
r € p. Then r € (f) and so there exists 1 such that r = r;f. As before w.l.o.g r1 € p.
In particular there is an increasing sequence (1) C (r1) C (rz2) C .... This sequence has
to stabilize at some step n since R is Noetherian. This means that ur,, = r,—1 for some
unit v € R. By construction this means that ur, = r,f, since R is a domain this implies
that f = w is a unit. This is a contradiction, hence (f) = p.

A correct solution gives 6 points, an almost complete solution gives 4 points, correct ideas
gives 2 points

3. We have 0 is of height zero. Let p be of hight one, then p # 0. Let f € p since R is a
UFD there exists unique irreducible prime elements p; and unique integers «; such that
g = up{'...pom for some unit u. Since p is prime there exists some 4 such that p; € (p).
Then 0 C (p;) C (p) implies that p; = p since p is of hight one.

A correct solution gives 6 points, an almost complete solution gives 4 points



