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This examination booklet contains 6 problems on 20 pages of paper including the
front cover and the empty pages.

Please, follow the instructions below!

(1) First sign the booklet on the line provided above!
(2) Calculators, books, notes, electronic devices etc. are NOT allowed.
(3) Please, mute your phone and leave it in your bag at the back of the classroom.
(4) Do all of your work in this booklet. If you need extra paper, ask the proctors

to give you yellow paper. Make sure to number the yellow pages in a clear
way, so that the graders cannot get confused with the correct order of the
pages.

(5) You should fully justify/explain your answers. In each question, it is always
stated what results you can assume without proving. Prove all relevant
computations and claims that you make.

(6) The exercises do not require any involved computations or elaborate discus-
sions – try to be coincise.

(7) You may unstaple the booklet, we are prepared to staple it back. However,
it is your responsibility to put the papers in the right order.

This booklet is divided into 3 parts: Part A, Part B, Part C.
Each part contains 2 questions in total.
For each of Part A, Part B, Part C, you should choose exactly one of the
two questions and solve that.
All questions carry equal weight.

In the table below, for each of the 3 parts report in the second column (the one
labelled "Question #") the number corresponding to the question that you have
attempted.
Only those questions whose number is reported in the table will be marked.

Part Question # Maximum score Your score
A 25
B 25
C 25

Exam 75 =E
Homework 210 =HW

Total 100 =E + 25
210
∗HW
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Part A

Choose one of the two following questions and solve it. Do not forget to report on
the first page of the booklet which of the two questions you solved to Part A.

Question A.1 [25pt]

Let F be a field. For n ∈ N>0, we shall denote
Rn := F [X1, . . . , Xn], R

′
n := F [X1, X

−1
1 , X2, X

−1
2 , . . . , Xn, X

−1
n ].

(1) Prove the following statement:

Let m ⊂ Rn be a maximal ideal. Then the field k = Rn/m is an algebraic
extension of F .
[You may assume here any result proved in the lectures, if clearly stated.]

[5pt]
(2) State and prove the weak Nullstellensatz. [5pt]
(3) For any n, describe the maximal ideals of R′n, when F = R.

[You should indicate generators for each maximal ideal of R′n.] [5pt]
(4) Assume that F is algebraically closed.

Compute the Krull dimension of R′n. [5pt]
(5) Assume that F is algebraically closed.

Show that any prime ideal p ⊂ R′n is the intersection of all maximal ideals
of R′n containing p. [5pt]
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Solution to Question A.1

(1) Let m ⊆ F [x1, . . . , xn] =: R be a maximal ideal. Then k := F [x1, . . . , xn]/m
is a field which is a quotient of a polynomial ring over the field F . More-
over, k contains F because of the (injective) ring homomorphism F →
F [x1, . . . , xn]/m. Then trdegF k = dim k = 0 by Theorem 5.9 of the course;
thus, k is an algebraic extension of F .

(2) We state and prove the Weak Nullstellensatz.

Theorem 0.1. If F is an algebraically closed field then every maximal ideal
of F [x1, . . . , xn] is of the form mc1,...,cn := (x1−c1, . . . , xn−cn) for c1, . . . , cn ∈
F .

Proof. The ideal mc1,...,cn = (x1 − c1, . . . , xn − cn) is maximal as it is the
kernel of the morphism φc1,...,cn : F [x1, . . . , xn]→ F which the identity on F
and sends xi to ci ∈ F . You can find the proof of this claim in the notes, cf.
Example 7.3 in the notes.
Let m ⊆ F [x1, . . . , xn] =: R be a maximal ideal. Then part (1) implies that
k := F [x1, . . . , xn]/m is an algebraic extension of F . But F is algebraically
closed, so k ⊃ F is the trivial extension and we can identify k with F via this
embedding. Let ci := xi ∈ k = F . Then mc1,...,cn ⊆ ker(F [x1, . . . , xn]→ k) =
m. Since mc1,...,cn is maximal and m is a proper ideal, we obtain mc1,...,cn =
m. �

(3) Claim. R′n is the localization of Rn at the multiplicative system mn =
{c
∏n

i=1 x
ti
i , ti ∈ N,

∏n
i=1 ti 6= 0, c ∈ F ∗}.

Proof. As the multiplicative system is generated (multiplicatively) by the
monomials x1, x2, · · · , xn the conclusion follows at once. �

As R′n is the localization of Rn at mn, then it was proven in the example
sheets that the maximal ideals of R′n are the localizations of those maximal
ideals of Rn that do not contain any element of mn.
Let m ⊂ Rn be a maximal ideal. As F ' R, then Rn/m is isomorphic to
either R or C by part (1).
If Rn/m ' R, then we can repeat the argument given in part (2) and show
that there exists c1, c2, . . . , cn ∈ R, such that m = mc1,c2,...,cn = (x1 − c1, x2 −
c2, . . . , xn−cn). In this case, m∩mn = ∅ if and only if ci 6= 0, ∀i = 1, 2, . . . , n
by the maximality of m. Thus, all maximal ideal in R′n are of the form
(x1 − c1, x2 − c2, . . . , xn − cn), (c1, c2, . . . , cn), ci 6= 0, ∀i.
If Rn/m ' C, then denoting by xi ∈ Rn/m the class of xi, it follows that
xi is a root of a monic polynomial fi(X) of degree 1 or 2 irreducible over
R, the minimal polynomial of xi over R ⊂ Rn/m – here we are indentifying
R ⊂ Rn/m with the image of the composition of homomorphisms

R i // Rn
π // // Rn/m ,

where i is the inclusion of the fileds of coefficients in the polynomial ring,
while π is the projection to the quotient. But then the kernel of the map π is
the ideal =(f1(x1), f2(x2), . . . , fn(xn)). In this case, m ∩mn = ∅ if and only
if fi(X) 6= X, ∀i = 1, 2, . . . , n by the maximality of m. Thus, all maximal
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ideal in R′n are of the form (f1(x1), f2(x2), . . . , fn(xn)), fi(X) ∈ R[X] monic
irreducible polynomial of degree 1 or 2, and fi(X) 6= X, ∀i.

(4) As R′n is a localization of Rn, then dim(R′n) = dimR′ as
Rn ⊂ R′n ⊂ Frac(Rn)

which implies that Frac(R′n) = Frac(Rn), so that by Theorem 5.9 of the
course, dim(R′n) := trdegFFrac(R′n) = trdegFFrac(Rn) =: dimR′.

(5) As R′n is the localization of Rn at mn, then it was shows in class that the
prime ideals of R′n are the extensions under localization of those prime ideals
of Rn that do not contain any element of mn. Moreover, the same argument
as in (3) shows that the maximal ideal of R′n have the form (X1 − a1, X2 −
a2, . . . , Xn − an), ai ∈ F , a1a2 · an 6= 0.
Let us denote by π : Rn → R′n the localization map. Then, we know that p
is the extension of a prime ideal q ⊂ Rn.
Claim. Any prime ideal q ⊂ Rn is the intersection of all maximal ideals of
Rn containing q.
Proof. It is clear that

q ⊂ ∩m maximal, m⊇qm.

Assume that the reverse inclusion does not hold. But then
∃f ∈ (∩m maximal, m⊇qm) \ q.

But then f(a) = 0, ∀ainV (q). On the other hand, we have shown in class
that since (F is algebraically closed and) q is prime, hence radical, then
q = {g ∈ F [x1, . . . , xn] = Rn | g(a) = 0, ∀a ∈ V (q) ⊂ An}. In particular,
also f ∈ q by the above observation, which gives a contradiction. �

It suffices to show that the following claim. Claim Let {Ji}i∈I be prime
ideals of Rn such that L := ∩i∈IJi is prime and L ∩ mn = ∅. Then Le =
∩i∈IJei .
Proof. Le ⊂ ∩i∈IJei : let t ∈ (∩i∈IJi)e then t = r/s, with r ∈ ∩i∈IJi, s ∈ mn.
Then as r ∈ Ji, ∀i ∈ I, then r/s ∈ Jei , ∀i ∈ I.
Le ⊃ ∩i∈IJei : let t ∩i∈I Jei , t = r/s, r ∈ Rn, s ∈ mn. But then r = st ∈ Jei ,
∀i ∈ I. If for a certain i ∈ I, Ji ∩mn = ∅, then Ji = Jeci , hence r ∈ Ji. If
for a certain i ∈ I, r 6∈ Ji, then Jeci 6= Ji and by the primality of the Ji, then
Jei = (1), that is, Ji ∩mn 6= ∅. As Ji is prime and mn contains monomials in
the xk then xl ∈ Ji for some l = 1, . . . , n. This implies then that rx1 ·xn ∈ Ji,
∀i ∈ I, hence rx1 · xn ∈ L. As L∩mn = ∅, then x1 · xn 6∈ L, hence r ∈ L, so
that r/s ∈ Le. �
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Question A.2 [25pt]

Let F be an algebraically closed field Let n, p, q be positive integers, with p >
1, n, q > 0.

(1) State the definition of an integral extension of rings and the definition of an
integrally closed ring. [4pt]

(2) State Noether’s Normalization Theorem. [4pt]
(3) Let R be the ring R := F [X, Y, T1, . . . , Tn]/(X

pY q − f(T1, . . . , Tn)), where
f ∈ F [T1, . . . , Tn] is a non-constant polynomial.
Construct an integral extension S ⊂ R with S = F [Z1, . . . , Zl] as guaranteed
by Noether’s Normalization Theorem.
What is the meaning of the integer l? [9pt]

(4) Show that in each entry of the list below the ring R is a domain and compute
the integral closure:
(a) R = F [x, y]/(x2 − y3)
(b) R = F [x, y, z]/(x2 − yz2)
(c) R = F [x, y, z]/(x2 − yz)

[8pt]
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Solution to Question A.2

(1) This is Definition 5.11 in the notes.
(2) This is Theorem 5.18 in the notes.
(3) Let R be the ring R := F [X, Y, T1, . . . , Tn]/(X

pY q − f(T1, . . . , Tn)), where
f ∈ F [T1, . . . , Tn] is a non-constant polynomial. Take the following change
of coordinates

A := X, B = Y −X, Ci = Ti,∀i = 1, 2, . . . , n,

so that B+A = Y With respect to this new set of coordinate, the polynomial
XpY q − f(T1, . . . , Tn) becomes

Ap(B + A)q − f(C1, . . . , Cn) = Ap+q +

q∑
i=i

(
q

i

)
BiAp+q−1 − f(C1, . . . , Cn)

and

R :=F [X, Y, T1, . . . , Tn]/(X
pY q − f(T1, . . . , Tn))

=F [A,B,C1, . . . , Cn]/(A
p+q +

q∑
i=i

(
q

i

)
BiAp+i−1 − f(C1, . . . , Cn))).

which immediately show that R is integral over the subring F [B,C1, . . . , Cn],
as by the above observations R = F [B,C1, . . . , Cn][A] and A satisfies the
monic equation Sp+q +

∑q
i=i

(
q
i

)
BiSp+i−1− f(C1, . . . , Cn) = 0 in the indeter-

minate S.
Alternatively, one can construct an integral extension S ⊂ R with S =
F [Z1, . . . , Zl] following the proof of Noether’s Normalization Theorem.
When R is a domain, then the integer l is the transcendence degree of the
field of fractions of R. [9pt]

(4) (a) R = F [x, y]/(x2 − y3)
To prove R is a domain, it suffices to show that (x2−y3) is irreducible, as
F [x, y] is a UFD. Considering the isomorphism F [x, y] ' F [y][X] where
the latter is the ring of polynomials in the variable X with coefficients
in F [y], then the only possibilty for (X2 − y3) to be irreducible is that
it is a product of two polynomials of degree 1 in X,

X2 − y3 = p1(X, y)p2(X, y),

p1(X, y) = a1(y)X + b1(y), p2(X, y) = a2(y)X + b2(y).

But then,

a1(y) · a2(y) = 1, b1(y) + b2(y) = 0, b1(y) · b2(y) = y3,

which is impossible as it would imply that −b1(y)2 = y3.
To compute the integral closure of R, let us denote by Q the field of frac-
tions of R. We will denote by x, y the classes of x, y in R, respectively.
Then x

y
∈ Q and (

x

y

)2

=
x2

y2
=
y3

y2
= y,
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that is, x
y
is a solution to the monic polynomial T 2 − y ∈ R[T ]. Thus

x
y
∈ R, where R denotes the integral closure of R. Moreover,(

x

y

)3

=
x3

y3
=
x3

x2
= x,

so that F
[
x
y

]
⊇ R, in particular Q is also the field of fractions of the

ring F
[
x
y

]
.

Finally, we claim that F
[
x
y

]
⊆ Q is integrally closed. Indeed, it suffices

that to prove that F
[
x
y

]
' F [T ], where T is just a free variable. As

Q is the field of fraction of F
[
x
y

]
, then using the above isomorphism

Q ' F (T ) and we have seen that F [T ] ⊆ F (T ) is integrally closed. To
prove that there exists an isomorphism F

[
x
y

]
' F [T ], let us notice that

F [x] ⊂ R ⊂ F
[
x
y

]
and F [x] ' F [U ], where U is just a free variable.

This follows since we have the projection to the quotient map (restricted
to F [x])

F [x] �
� // F [x, y] // // R := F [x, y]/(x2 − y3)

which is injective since F [x] ∩ (x2 − y3) = (0). But then this implies
that the dimension of F

[
x
y

]
as a Z-module is ∞ (as the dimension of

F [x] is ∞), so that F
[
x
y

]
is isomorphic to a polynomial ring.

(b) R = F [x, y, z]/(x2 − yz2).
To prove R is a domain, it suffices to show that (x2 − yz2) is irre-
ducible, as F [x, y, z] is a UFD. Considering the isomorphism F [x, y, z] '
F [y, z][X] where the latter is the ring of polynomials in the variable X
with coefficients in F [y, z], then the irreducibility of X2 − yz2 follows
from Eisenstein’s criterion, as y does not divide the leading coefficient
of the polynomial, which is 1, y divides the coefficient of the linear term
in X, which is 0, and y divides the constant term with respect to the
variable X, yz2, while y2 does not divide yz2.
To compute the integral closure of R, let us denote by Q the field of
fractions of R. We will denote by x, y, z the classes of x, y, z in R,
respectively. Then x

z
∈ Q and(

x

z

)2

=
x2

z2
=
yz2

z2
= y,

that is, x
z
is a solution to the monic polynomial T 2 − y ∈ R[T ]. Thus

x
z
∈ R, where R denotes the integral closure of R. Thus F

[
x
z
, z
]
⊃ R

since x
z
· z = z. In particular Q is also the field of fractions of the ring

F
[
x
z
, z
]
.

Finally, we claim that F
[
x
z
, z
]
⊆ Q is integrally closed. Indeed, it

suffices that to prove that F
[
x
z
, z
]
' F [T, V ], where S is just a free

variable. As Q is the field of fraction of F
[
x
z
, z
]
, then using the above

isomorphism Q ' F (T, V ) and we have seen that F [T, V ] ⊆ F (T, V ) is
integrally closed. To prove that there exists an isomorphism F

[
x
z
, z
]
'

F [T, V ], let us notice that F [x, z] ⊂ R ⊂ F
[
x
z
, z
]
and F [x, z], where
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U is just a free variable. The latter claim follows since we have the
projection to the quotient map (restricted to F [x, z])

F [x, z] �
� // F [x, y, z] // // R := F [x, y, z]/(x2 − yz2)

which is injective since F [x, z]∩ (x2− yz2) = (0). But then this implies
that F

[
x
z
, z
]
is not finitely generated as a F [z]-module (asF [x, z] is not

finitely generated as a F [z]-module), so that F [z]
[
x
z

]
is isomorphic to a

free polynomial ring in 2 variables.
(c) R = F [x, y, z]/(x2 − yz).

To prove R is a domain, it suffices to show that (x2−yz) is irreducible, as
F [x, y, z] is a UFD. Considering the isomorphism F [x, y, z] ' F [y, z][X]
where the latter is the ring of polynomials in the variable X with coef-
ficients in F [y, z], then the irreducibility of X2− yz follows from Eisen-
stein’s criterion, as y does not divide the leading coefficient of the poly-
nomial, which is 1, y divides the coefficient of the linear term in X,
which is 0, and y divides the constant term with respect to the variable
X, yz2, while y2 does not divide yz2.

[8pt]
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Part B

Choose one of the two following questions and solve it. Do not forget to report on
the first page of the booklet which of the two questions you solved to Part B.

Question B.1 [25pt]

Let R be a commutative ring with unit. Let n, q, k be positive integers. We denote
by Matk(R) the free R-module of k × k matrices with coefficients in R.

(1) State the Fundamental Theorem of PIDs and the Smith normal form reduc-
tion theorem. [5pt]

(2) For the following matrices, either compute, when possible, their Smith nor-
mal form or explain why they cannot be reduced to Smith Normal form:
(a) A ∈ Matn(R[X]) and all entries of A are equal to the polynomial

f(X) = 2020X2019 + 2019X2018 + 2018X2017 + 2017X2016 + · · ·+ 3X2 + 2X + 1.

(b) B =

(
2 0
X 0

)
∈ Mat2(Z[X])

(c) C is the same matrix as in (a), but this time you should consider it as
a matrix with coefficients in Z[X].

[10pt]
(3) Give an example of a Z-module M which is not finitely generated and for

which there exists an endomorphism f : M → M which cannot be put in
Smith normal form. [5pt]

(4) Let R = Q and let fmin(X) = (X − 1)2(X3 − 3), g(X) = (X − 1)4(X3 − 3).
How many different conjugation classes are there in Mat7(R) of matrices
with minimal polynomial fmin(X) and characteristic polynomial g(X)?
[Recall for an endomorphism ψ : V → V of a Q-vector space the minimal
polynomial of ψ is the monic generator of the kernel of the ring homorphism

Q[X]→ EndQ(V )

0 7→ 0

1 7→ 1

X 7→ ψ.

] [5pt]
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Solution to Question B.1

(1) The Fundamental Theorem of PIDs is Theorem 4.13 in the notes.
Smith normal form reduction theorem is Theorem 4.5 in the notes. [5pt]

(2) (a) We consider the matrix A ∈ Matn(R[X]) as an endomorphism a of
the free module M := ⊕ni=1R[X]. Let ei, i = 1, . . . , n denote the
standard basis of this free module. Then with respect to this basis
a(ei) =

∑n
j=1 f(X)ej. But then for any i, k = 1, 2, . . . , n,

a(ei − ek) = a(ei)− a(ek) = 0.

Claim. The following is a basis of M

gi = −ei+1 + ei, i = 1, . . . , n− 1, gn =

∑n
i=1 ei
n

.

Proof. To show that {g1, . . . , gn} are linearly independent in M , let us
notice that 0 6= gn ∈ Im(a), while gi ∈ ker(a), i = 1, . . . , n− 1, and

0 =
n−1∑
i=1

λigi = (λ1, λ2 − λ1, λ3 − λ2, . . . , λi − λi−1︸ ︷︷ ︸
i-th position

, . . . ,−λn−1)

if and only if λi = 0, ∀i = 1, . . . , n − 1. To conclude the proof, then it
suffices to consider the change of basis matrix from the basis {gi} to the
basis {ei} which is as follows

S =



1 0 0 0 0 1
n

−1 1 0 0 0 1
n

0 −1 1 0 0 1
n

0 0 −1 . . . 0
...

0 0 0 0 1 1
n

0 0 0 0 −1 1
n

 .

By the above reasoning, we know det(S) 6= 0. On the other hand, as all
the entries of S are in R, then det(S) ∈ R, but any non-zero element of
R is invertible in R[X], which concludes our proof. �
With respect to the basis then as

a(g1) = 0, i = 1, . . . , n− 1, a(gn) = f(X)gn,

so that the matrix of a in this basis is given by(
f(X) 01,n−1
0n−1,1 0n−1,n−1

)
which is exactly in Smith normal form.

(b) ker(B) = Z[X](0, 1), while Im(B) = Z[X](2, X). Hence, the only pos-
sibility to have a Smith normal form for the matrix B would be that
we have a basis {g1, g2} of Z[X]2 such that (up to permuting the or-
der of the gi) the span of g1 contains Z[X](2, X) and the span of g2
contains Z[X](0, 1). But this forces g1 = (2, X) as gcd(2, X) = 1 and
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g2 = (0, 1). But the change of basis matrix from the basis {g1, g2} to
the basis {e1, e2} would be

S =

(
2 0
X 1

)
,

which is not invertible, since det(S) = 2 and 2 is not invertible in Z[X].
(c) Take n = 2 and let us use the same notation as in part (a). Then

ker(a) = Z[X](e1 − e2) and Im(a) = Z[X][f(X)(e1 + e2)]. Hence, the
only possibility to have a Smith normal form for the matrix C would
be that we have a basis {g1, g2} of Z[X]2 such that (up to permuting
the order of the gi) the span of g1 contains Z[X](e1 − e2) and the span
of g2 contains Z[X][f(X)(e1 + e2)]. But this forces g1 = e1 − e2 and
g2 = h(X)(e1 + e2), with h(X)|f(X). But the change of basis matrix
from the basis {g1, g2} to the basis {e1, e2} would be

S =

(
1 h(X)
−1 h(X)

)
,

which is not invertible, since det(S) = 2h(X) and 2 is not invertible in
Z[X].

[10pt]
(3) Let M be the Z-module defined as

M :=
∞⊕
i=0

Z.

The module M is the collection of all sequences of integers, (ai)i∈N, ai ∈ Z,
which only have a finite number of non-zero elements. The elements ei ∈
M, i ∈ N, where ei is the sequence that has 1 in the i-th spot and 0 elsewhere,
form a basis of M . The module M is equipped with the following family of
endomorphisms

sk : M →M, k ∈ N>0

sk(ei) = ei+k.

For any k > 0, sk is injective since, by definition of sk, the elements sk(ei)
are linearly independent as they are part of a basis of M .
Claim. For any 0 6= (ai)i∈N ∈M , then sk((ai)) is never parallel to (ai).
Proof. In fact if j is the largest index such that aj 6= 0 in (ai), then j + k is
the is the largest index such that sk(ai) has a non-zero entry, which proves
our claim. �

But this implies that sk, k > 0, can never be put in Smith normal form
since sk 6= 0 but we cannot find any eigenvector of sk.

(4) Let A be a matrix satisfying the conditions of the exercise. As g(X) =
(X−1)4(X3−3), we know that 1 is an eigenvalue of A of algebraic multiplicity
= 4. Then, up to similarity, A contains a 4× 4 diagonal block of the form

B 0 0 0 0
0 1 ∗ ∗ ∗
0 0 1 ∗ ∗
0 0 0 1 ∗
0 0 0 0 1

 ,
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where B is a 3× 3 matrix. As fmin(A) = 0 then
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1


2

− Id = 0.

But then the Jordan normal form theorem implies that A is similar to one
of the following 2 matrices (which are not similar)

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

On the other hand, the matrix B must satisfy the equation B and you have
seen in the exercises that if an n×n matrix S satisfies a degree n polynomial
g(X) ∈ Q[X] irreducible over Q, g(X) = Xn +

∑n−1
i=0 aiX

i then S is similar
to the matrix 

0 0 0 0 −a0
1 0 0 0 −a1
0 1

. . . 0
...

0 0 1 0 −an−2
0 0 0 1 −an−1

 .

Hence, B is similar to the matrix, 0 0 3
1 0 0
0 1 0


and so the only possibilities for the classes of similitude of A are

0 0 3 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1


,



0 0 3 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


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Question B.2 [25pt]

Let R be a commutative ring with unit.

(1) Define the notion of a primary ideal I ⊂ R.
Show that the radical ideal

√
I of a primary ideal I ⊂ R is prime.

State the theorem on the existence of minimal primary decompositions for
ideals in a noetherian ring. What can be said in regards to the uniqueness
such decompositions? [5pt]

(2) Let R be a PID. Show that R is Noetherian.
Is R Artinian? Either show that the stament holds or provide a counterex-
ample.
[For the first part of the question you cannot use the implication PID ⇒
UFD.] [4pt]

(3) Let R be a PID. Let f ∈ R be a non-zero element and define R′ = R/(f).
Provide a justified answer to the following questions:
(a) Characterize those f ∈ R for which R′ is a domain.
(b) Is R′ Artinian?
(c) Compute the radical ideal

√
0 ⊂ R′.

Answer questions (a-d) when R is a UFD instead of a PID. [4pt]
(4) Let R be a UFD and let I ⊂ R be a principal ideal.

Show that there exists a unique minimal primary decomposition of I.
Show that the uniqueness does not hold if I is not assumed to be principal.

[5pt]
(5) Show that if I =

√
I is a radical ideal and ab ∈ I, then I =

√
I + (a) ∩√

I + (b). [7pt]
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Solution to Question B.2

(1) See Definition 7.32, Proposition 7.34, Theorem 7.52 and 7.54 in the notes.
(2) To show noetherianity of R, we have to show that R satisfies the ACC. Let

I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ . . .

be an ascending chain of ideals. Then,

I = ∪∞k=1Ik

is an ideal. Since R is a PID, then I = (f) and f ∈ In0 , n0 ∈ N. But
then I = In0 , since I ⊃ In0 , but since f ∈ In0 also I ⊂ In0 , hence In0 =
In0+k, ∀k ≥ 0 which show that the ascending chain is eventually constant.
A PID is not necessarily Artinian. Take Z which is a PID, but it contains
the infinite descending chain of ideals

(2) ⊃ (4) ⊃ (8) ⊃ · · · ⊃ (2i) ⊃ . . . .

(3) (a) R′ is a domain if and only if f ′ is irreducible, that is, if g|f ′ then g = cf ′,
c invertible in R. This does not change if R is a UFD rather than a
PID.

(b) The ideal of R′ are in 1-1 correspondence with the ideals of R which
contains (f). Hence if we have a descending chain of ideals of R′

I ′1 ⊃ I ′2 ⊃ · · · ⊃ I ′n ⊃ . . .

this corresponds to a descending chain of ideals of R

I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ . . .

containing (f). But then, since R is PID, then Ii = (fi) and fi|fi+1|f .
But since PID ⇒ UFD this gives a contradiction, since it would imply
that f has infinitely many distinct non-trivial divisors.
If R is UFD, consider the case R = Z[X], which we know is UFD, and
take f = X Then R′ = Z and we have seen that Z is not Artinian.

(c) The radical ideal
√

(0) ⊂ R′ is the image of the ideal
√
(f) ⊂ R under

the quotient map R → R′. On the other hand
√

(f) := {x ∈ R | ∃n ∈
N>0 s.t. xn ∈ (f)}. An element y ∈ R belongs to (f) when f |y. As R is
a UFD, then writing the decomposition of f

f =
n∏
i=1

fni
i , ni ∈ N>0,

then we see that an element x ∈ R such that xn ∈ (f) must be divisible
by all the irreducibles fi dividing f . On the other hand, taking n :=
maxni, it follows that if fi|x, ∀i, then f |xn. Hence,

√
(f) = (

∏n
i=1 fi).

We have not really used that R is PID, just that it is a UFD.
(4) Let f ∈ R be irreducible. Then p = (f) is prime. Also, ∀n ∈ N>0, Jn := (fn)

is p-primary. To prove this, take x, y ∈ R such that xy ∈ Jn and assume
that x 6∈ Jn. Then fn 6 |x and fn|xy which implies that f |y so that yn ∈ Jn.

Let I = (g) and write

g =
n∏
i=1

gni
i , ni ∈ N>0

15



its decomposition. Then
I = ∩ni=1(g

ni
i )

is a unique minimal primary decomposition, since:
(a) the prime ideals (gi) are the associated primes of I: in fact, for j =

1, . . . , n, (gj) = Ann([g
nj−1
j

∏n
i=1,i 6=j g

ni
i ]).

(b) the ideals (gi) are minimal: in fact, gi is irreducible.
For the non-uniqueness of the primary decomposition for non-principal ideals,
we saw, for example, Example 7.55 in the notes.

(5) We have to show that

I ⊂
√
I + (a) ∩

√
I + (b), and I ⊃

√
I + (a) ∩

√
I + (b).

⊂. Since I ⊂ I+(a), I ⊂ I+(b), a fortiori also I ⊂
√
I + (a), I ⊂

√
I + (b),

which implies I ⊂
√
I + (a) ∩

√
I + (b).

⊃. Let x ∈
√
I + (a) ∩

√
I + (b). Then x ∈

√
I + (a) and x ∈

√
I + (b).

Hence, there exists n,m such that
xn = i1 + f1a, xm = i2 + f2b, i1, i2 ∈ I, f1, f2 ∈ R.

Thus
xn+m = (i1 + f1a)(i2 + f2b) = j1 + cab, j1 ∈ I, c ∈ R.

This implies that xn+m ∈ I as ab ∈ I, but as I is radical, this implies that
x ∈ I.
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Part C

Choose one of the two following questions and solve it. Do not forget to report on
the first page of the booklet which of the two questions you solved to Part C.

In this section you can assume the following result:
Let Q be an R-module. If Qm = 0, for any maximal ideal m ⊂ R, then Q = 0.

Question C.1 [25pt]

Let R be a commutative ring with unit.

(1) Define what it means for a subset T ⊂ R to be a multiplicatively closed subset
of R. Define the localization T−1R of R at T and the natural homomorphism
R→ T−1R. [6pt]

(2) Let p ⊂ R be a prime ideal. Define the localization Rp of R at p. When is
the natural homomorphism R→ Rp injective? [5pt]

(3) Show that if for every prime p ⊂ R, Rp contains no nilpotent element then
R contains no nilpotent element. [7pt]

(4) Assume that R is a domain. Let M be an R-module.
recall that the submodule Tor(M) ⊂ M of torsion elements of M is defined
as

Tor(M) = {m ∈M | ∃r ∈ R \ {0} such that rm = 0}.
Let S be a multiplicatively closed subset of R. Show that Tor(S−1M) =
S−1(Tor(M)), where S−1(Tor(M)) denotes the submodule generated by the
image of Tor(M) in S−1M .
Show that for an R-module M the following are equivalent:
(a) M is torsion-free;
(b) Mp is torsion-free, for all prime ideals p ⊂ R;
(c) Mm is torsion-free, for all maximal ideals m ⊂ R;

[7pt]
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Question C.2 [25pt]

Let R be a commutative ring with unit. Let M,N be R-modules.

(1) Define the R-modules ExtiR(M,N). [5pt]
(2) Construct a projective resolution for an R-module M

P : · · · → Pi → · · · → P1 → P0 →M → 0,

where each Pj is a free R-module.
Moreover, show that if R,M are Noetherian, then each Pi can be taken to
be a free and finitely generated R-module. [5pt]

(3) Let p ⊂ R be a prime ideal. Let P be a finitely generated free R-module.
Show that there is an isomorphism or Rp-modules

φP,N : HomR(P,N)p → HomRp(Pp, Np),

where the moduleHomR(P,N)p is the localization of theR-moduleHomR(P,N)
at p.
[Hint: Use the universal property of free modules.] [5pt]

(4) Let P1, P2 be free R-modules and let f : P1 → P2 be a homomorphism of
R-modules.
Show that f induces a homorphism of Rp-modules fp : (P1)p → (P2)p.
Deduce that the following diagram commutes

HomR(P2, N)p
HomR(f,N)p //

φP2,N

��

HomR(P1, N)p

φP1,N

��
HomRp((P2)p, Np)

HomRp (fp,Np)
// HomRp((P1)p, Np),

where HomR(f,N)p is the localization of the morphism HomR(f,N) at p.
[5pt]

(5) Use (2− 4) to show that there exists an isomorphism

ψ : ExtiR(M,N)p → ExtiRp
(Mp, Np).

[5pt]
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