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Rings and modules – Final
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Your Name

This examination booklet contains 7 problems on 24 sheets of paper including the
front cover and the empty sheets.

Do all of your work in this booklet, if you need extra paper, ask the
proctors to give you yellow paper, show all your computations and jus-
tify/explain your answers. Calculators, books, notes, electronic devices
etc. are NOT allowed.

Problem Possible score Your score
1 30
2 5
3 20
4 10
5 10
6 10
7 15

Total 100

By k we always denote an arbitrary field.
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Question 1 [30]

For each of the following rings determine the Krull dimension, the nilradical and
one minimal primary decomposition of (0).

(a) R = k[x, y]/(x2, y2). In this case also consider the following module M :=
R/(x)⊕R/(y), where the bar denotes the residue classes of the corresponding
elements. Compute dimkM and dimk R. Is M isomorphic to R? [12]

(b) R = k[x, y]/(x3, xy2). [6]
(c) R = k[x, y]/(x3 + (y2 + y)x+ y). [6]
(d) R = k[x, y, z]/(x2+y2+z2) (your answer should depend on the characteristic

of k). [6]

Throughout this solution, we denote elements of polynomial rings by x, y, z and 0,
and their images in the quotients by x,y, z and 0.

(a) Let I ⊂ k[x, y] be (x2, y2). The radical of I satisfies
√
I ⊃ (x, y) ⊃ I. But the

ideal (x, y) is maximal, so is radical. So
√

(0) in R is (x, y). The nilradical
is the intersection of all prime ideals of R. Therefore as the nilradical is
maximal, it is the unique prime ideal of R. So R has Krull dimension 0.
(x2, y2) is itself primary because it’s radical is maximal.

First note that any element of R can be written uniquely as a+bx+cy+dxy
for a, b, c, d ∈ k. As a k-vector space,M has basis {(1, 1), (1, x), (y, 1), (y, x)},
and so had dimension 4. R has basis {1, x, y, xy} and so also has dimension
4 as a k-vector space. M is not isomorphic to R as an R-module, because
for example TorxR = (x) is a one dimensional k-vector space and TorxM =
((1, x), (y, x)) is a two dimensional k-vector space.

(b) If I ⊂ k[x, y] is the ideal (x3, xy2) we have I ⊂ (x) ⊂
√
I, and as (x) is

prime, it is also radical, and so
√

(0) = (x). (x) is the intersection of all
prime ideals containing I, and is itself prime. So it is the unique minimal
prime ideal containing I. k[x, y] is Krull dimension two, and contains the
maximal chain of prime ideals (0) ⊂ (x) ⊂ (x, y). Therefore (x) ⊂ (x, y) is
a maximal chain of prime ideals in R. So R has Krull dimension 1. I can
be written as (x)∩ (x3, y2), which gives a primary decomposition. (x3, y2) is
radical because its radical is (x, y) which is maximal. Therefore a primary
decomposition of (0) is (x) ∩ (x3, y2).

(c) The ideal I = (x3+(y2+y)x+y) in k[x, y] is prime by Eisenstein’s criterion on
k[y][x] applied to the irreducible polynomial y in k[y]. Therefore

√
(0) = (0),

and this is a primary decomposition. In k[x, y] we have 0 ⊂ (x3+(y2+y)x+
y) ⊂ (x, y), and this is a maximal chain of prime ideals as k[x, y] has Krull
dimension 2. Therefore (0) ⊂ (x, y) gives a maximal chain of primes in R
and the Krull dimension of R is 1.

(d) Firstly, suppose the characteristic of k is 2. We have (x2 + y2 + z2) =

(x+ y+ z)2. The nilradical satisfies
√

(0) ⊃ (x+ y+ z) ⊃ I, and (x+ y+ z)

is prime. Therefore
√

(0) = (x+ y+ z). We claim that the ideal (x+ y+ z)2
is primary. For suppose xy ∈ (x+y+z)2. Then as k[x, y, z] is a UFD, either
(x + y + z)2|f or (x + y + z)|g. In the latter case g2 ∈ (x + y + z)2. As the
nilradical (x+y+z) is prime, it is the minimal prime ideal containing (0). We
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have a chain of prime ideals (0) ⊂ (x+y+ z) ⊂ (x+2y, x+2z) ⊂ (x, y, z) in
k[x, y, z] (which is of Krull dimension 3). Therefore R is of Krull dimension
2.

Now suppose R has characteristic not equal to 2. Then (x2 + y2 + z2) is
prime by Eisenstein: either k contains a square root of −1 and so x2 + y2 =
(x+ iy)(x− iy) with x+ iy 6= x− iy, or it does not, in which case x2 + y2 is
itself irreducible in k[x, y]. Therefore (0) is equal to its own nilradical and is
its own primary decomposition. R has Krull dimension at least 2 because it
has transcendence degree 2: x and y are algebraically independent, for any
relation involving them also involves z. It cannot have transcendence degree
larger than 2 because 0 ⊂ (x2 + y2 + z2) is a non-trivial chain of primes in
k[x, y, z].
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Question 2 [5]

Let R be a (not necessarily commutative) ring. What does it mean for a module
M to be simple? Prove that if 0 6=M is a simple R-module then

EndR(M) = {φ :M →M |φ is an R−module homomorphism}
is a skew field.

An R-module M is simple if it has no submodules other than 0 and M .

Let M be a non-zero simple module, and φ ∈ EndR(M) a non-zero element of
EndR(M). We must show that φ has an inverse. For this it is enough to show that
it is bijective. But ker(φ) and im(φ) are both submodules of M , and neither can
be zero otherwise φ is zero. So both are equal to M and hence φ is injective and
surjective respectively.
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Question 3 [20]

Let R be a commutative ring. We say that an R-moduleM is Artinian if it satisfies
the descending chain condition on submodules; that is if every descending chain of
submodules

M1 ⊇M2 ⊇M3 ⊇ . . .

satisfies Mi =Mi+1 for all i sufficiently large.

(a) Suppose M has a submodule N . Prove that M is an Artinian R-module if
and only if both N and M/N are Artinian. [10]

(b) Suppose R is Artinian as an R-module. Prove that every prime ideal of R is
maximal.

[Hint: reduce it to the integral domain case by quotienting, and then show
that every Artinian integral domain is a field.] [10]

(a) Firstly suppose that M is Artinian. A chain of submodules of N are also
submodules of M and so they stabilise and N is Artinian. Similarly a chain
of submodules of M/N correspond to a chain of submodules of M under the
correspondence between submodules ofM/N and submodules ofM contain-
ing N . Hence M/N is also Artinian.

Conversely suppose that both N andM/N are Artinian, and that we have
a chain of submodules

M1 ⊇M2 ⊇M3 ⊇ . . .

in M .
Then

M1 ∩N ⊇M2 ∩N ⊇M3 ∩N ⊇ . . .

is a chain of submodules of N , and so for i sufficiently large, Mi ∩ N =
Mi+1∩N . Replace the sequenceMi by a truncation to assume that this holds
for all i. But we also have Mi/(N ∩Mi) ∼= (N +Mi)/N . The right hand side
is a chain of submodules of M/N and so stabilises. That is, Mi/(N ∩Mi)
stabilises for i sufficiently large. But as N ∩Mi is a fixed submodule of M ,
this implies that Mi stabilises.

(b) Suppose that P is a prime ideal of R. R/P is Artinian by the first part, so,
by the correspondence between ideals of R/P and ideals of R containing P ,
we may replace R by R/P to assume R is an integral domain and P = (0).

Now suppose that (0) is not maximal. Then there is some non-zero ideal
I ⊂ R which is not equal to R. In particular I contains some non-zero
element a. But then (a) is also a non-zero ideal, contained in I, so there is
a chain of ideals

(a) ⊃ (a2) ⊃ (a3) ⊃ ...

By the Artinian property, this chain stabilises: i.e. (ai) = (ai+1) for some
i. This means that we can write ai = rai+1 for some r ∈ R. But R is an
integral domain and ai is non-zero, so this implies that ar = 1. But then
(a) = R, which gives a contradiction to the existence of the ideal I.
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Question 4 [10]

Let A be the following matrix with entries in Z:

A =

−2 3 −1
6 −7 3
0 6 2


Put A into Smith normal form. Hence put the Z-module M generated by m1, m2

and m3 and subject to the relations
−2m1 + 6m2 = 0

3m1 − 7m2 + 6m3 = 0
−m1 + 3m2 + 2m3 = 0

into the form described by the structure theorem for finitely generated modules over
a PID.

We put the given matrix into Smith normal form using row and column operations:

−2 3 −1
6 −7 3
0 6 2

→
−1 3 −2

3 −7 6
2 6 0

→
 1 3 −2
−3 −7 6
−2 6 0

→
1 3 −2
0 2 0
0 12 −4



→

1 0 0
0 2 0
0 12 −4

→
1 0 0
0 2 0
0 0 −4

→
1 0 0
0 2 0
0 0 4


Let f : Z3 → Z3 be the linear map given by A. The image of f is equal to the
kernel of the natural projection Z3 → M . By changing bases of the two copies of
Z3 so that the matrix of M is in Smith normal form, we have found generators of
the module M which exhibit it as

Z/2Z⊕ Z/4Z
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Question 5 [10]

Let R be a commutative ring containing a multiplicative subset T . Prove, using
the universal property of localisation, that T−1(R[x]) ∼= (T−1R)[x].

We show that (T−1R)[x] satisfies the universal property required of T−1(R[x]). To
this end, suppose that there is a ring homomorphism f : R[x] → S such that the
image of every element of T is invertible.

This in particular gives a homomorphism fR : R→ S by restricting to the constants
in R[x]. The universal property of T−1R gives a unique homomorphism gR : T−1R→
S. To give a homomorphism g : (T−1R)[x] → S, it is enough to give such a
homomorphism gR and also specify the image of x, so we define g to extend gR
and satisfy g(x) = f(x). Define iR : R → T−1(R) to be the natural inclusion,
and define i : R[x] → (T−1R)[x] to be the natural extension of iR to R[x]. These
homomorphisms satisfy f = g◦i. Suppose there is another g′ which satisfies f = g′◦i.
Let g′R the restriction of g′ to the constant polynomials. By the universal property
of T−1R, gR = g′R. But then g and g′ agree both on T−1R and at x, and so they are
equal as homomorphisms (T−1R)[x]→ S. This completes the universal property of
T−1(R[x]).
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Question 6 [10]

State and prove the Noether normalisation theorem for the case of infinite base
fields. You can use without proof all the preliminary lemmas and propositions we
proved before the actual proof of Noether normalisation.

Let F be an infinite field, and R is a quotient of F [x1, . . . , xn]. Then there is subring
S of R such that S ∼= F [t1, . . . , tr] and R is integral over S.

Proof:

Let xi be the residue classes of xi in R. Then may assume that x1, . . . , xr are alge-
braically independent, and xr+1, . . . , xn are algebraic over F (x1, . . . , xr) ∼= F (t1, . . . , tr).

From here we proceed by induction on n−r. Since xn is algebraic over F (x1, . . . , xr),
it is also algebraic over F (x1, . . . , xn−1). So, there is a polynomial g(y1, . . . , yn) ∈
F [y1, . . . , yn] such that g(x1, . . . , xn) = 0, and g(x1, . . . , xn−1, yn) 6= 0 as a polynomial
in yn. Let G be the highest degree homogeneous part of g, and let d be its degree.
Then, as F is infinite, we may choose ci, such that F (c1, . . . , cn−1, 1) 6= 0. set
ỹi = yi − ciyn for 1 ≤ i ≤ n− 1. Consider the equation
(1)
0 = g(y1, . . . , yn) = g((y1−c1Yn)+c1yn, . . . , (yn−1−cn−1Yn)+cn−1yn, yn) = g(ỹ1+c1yn, . . . , ỹ2+c2yn, yn)

Consider the latter polynomial as a polynomial in yn. Then this polynomial has
degree at most d, and the coefficient of the ydn monomial is F 3 G(c1, . . . , cn−1, 1) 6= 0.
Hence, dividing by this element of F yields a monic polynomial in yn.

So, xn is integral over R′ := F (x1− c1xn, . . . , xn−1− cnxn), which is the quotient of
F [x1 − c1xn, . . . , xn−1 − cnxn] ⊆ F [x1, . . . , xn−1].
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Question 7 [15]

(a) Let R be a commutative integral domain. Prove that if R is a UFD then it
is integrally closed (in Frac(R)). [5]

(b) Let R = k[x, y, z]/(y3 + y2x2 + yx2 + x3z). You may assume without proof
that R is an integral domain. Compute the integral closure of R. [10]

(a) Suppose R is not integrally closed. Suppose a
b
∈ Frac(R) and that there is

a monic polynomial f(t) = tn +
∑n−1

i=0 ait
i with coefficients in R such that

f(a
b
) = 0. We may assume for a contradiction that a

b
/∈ R and so b - a. We

can reduce the fraction and so assume that if u is an irreducible element of
R and u|b then u - a. We have that (a

b
)n +

∑
ai(

a
b
)i = 0 and multiplying

through by bi gives an = −
∑n−1

i=0 a
ibn−i. But b divides the right hand side,

and so if u is any irreducible factor of b (which exists as b is not a unit) then
u|an by unique factorisation. Thus u|a, which gives a contradiction, so there
can be no such element a

b
.

(b) First we search for elements of Frac(R) which satisfy a monic polynomial
with coefficients in R. The equation y3 + y2x2 + yx2 + x3z = 0 suggests one
such: we can divide through by x3 to get ( y

x
)3 + ( y

x
)2x + y

x
+ z = 0 shows

that y
x
satisfies the polynomial t3 + xt2 + t+ z.

Let S be the ring obtained by adjoining y
x
to R. It is contained in the

integral closure of R, and we show that in fact S is integrally closed.
By denoting y

x
by t, S is isomorphic to the ring k[x, y, z, t]/(y − tx, t3 +

t2x+ t+ z), which in turn is isomorphic to k[x, t]. This polynomial ring is a
UFD so by the first part it is integrally closed.
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