Exercice bonus 1.

Considérons l'anneau suivant pour un corps quelconque k:

$$A = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in k \right\}.$$

1. Démontrez que si $I \neq A$ est un idéal (bilatère/à gauche/à droite) de A, alors I est contenu dans un des sous-ensembles suivants de A:

$$A_1 = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b \in k \right\}$$

et

$$A_2 = \left\{ \begin{pmatrix} 0 & b \\ 0 & c \end{pmatrix} \mid b, c \in k \right\}.$$

- 2. Montrez que A_1 et A_2 sont des idéaux bilatères. Montrez que A_1 et A_2 avec l'addition et la multiplication héritée de l'anneau A ne sont pas des anneaux.
- 3. Listez tous les idéaux (bilatères/à gauche/à droite) de A.

Solution. On note A^{op} l'anneau avec groupe additif (A, +) avec la multiplication définie par

$$g_1 *_{op} g_2 = g_2 g_1.$$

Notez en premier lieu l'isomorphisme d'anneaux entre $\sigma: A \to A^{op}$

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mapsto \begin{pmatrix} c & b \\ 0 & a \end{pmatrix}.$$

On vérifie que c'est un isomorphisme. La bijectivité est claire, comme σ est son propre inverse au niveau ensembliste. De plus comme

$$\begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 & a_1 b_2 + b_1 c_1 \\ 0 & c_1 c_2 \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} c_2 & b_2 \\ 0 & a_2 \end{pmatrix} \begin{pmatrix} c_1 & b_1 \\ 0 & a_1 \end{pmatrix} = \begin{pmatrix} c_1 c_2 & a_1 b_2 + b_1 c_2 \\ 0 & a_1 a_2 \end{pmatrix},$$

on conclut que σ est un isomorphisme d'anneaux.

Cela va nous permettre d'effectuer des raisonnements par symétrie et de faire moins de calculs. **Barème.** On enlèvera 10 points pour des affirmations de type "par symétrie" non motivées par des calculs ou l'isomorphisme évoqué ci-dessus. La symétrie ressentie dans la résolution de ce problème est incarnée par cet isomorphisme et il est important de pouvoir le détecter si on tient à formaliser de tels arguments.

1. On remarque si deux éléments d'une matrice dans la diagonale sont non-nuls, alors la matrice est inversible. Ainsi si I est un idéal (bilatère/à gauche/à droite) et $i \in I$ tel que les deux éléments de la diagonale sont non-nuls, comme i a dès lors un inverse (à gauche et à droite) alors I = A. Par contraposée, on conclut.

Barème. 10pts.

2. Notons que si

$$e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$

alors $A_1 = e_1 A$. Dès lors, A_1 est un idéal à droite. Maintenant pour $a, b, c \in k$ si

$$g = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \quad g' = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix},$$

on a $ge_1 = e_1 g'$. Ainsi on conclut que $e_1 A$ est également un idéal à gauche.

Comme $e_1^2 = e_1$, on voit que e_1 est un élément neutre à gauche dans A_1 . Si A_1 était un anneau avec la multiplication et l'addition héritée de A, celui-ci aurait un unique élément neutre 1_{A_1} et nécessairement $1_{A_1} = e_1$ car on aurait $e_1 = e_1 1_{A_1} = 1_{A_1}$. Mais si

$$e_1' = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

on voit $e'_1e_1 = 0 \neq e'_1$. Ainsi, on conclut que A_1 ne peut être un anneau avec la multiplication et l'addition héritée de A.

Maintenant, A_1 est envoyé sur A_2 par l'isomorphisme σ . Dès lors, on conclut que A_2 est un idéal bilatère, et que A_2 ne peut être un anneau avec l'addition et la multiplication héritée de A.

Barème. 10 points pour montrer que A_1 et A_2 sont bilatères. 20 points pour montrer que ce ne sont pas des anneaux.

3. Traitons les idéaux non-nuls et non égaux à A. On commence par traiter les idéaux strictement contenus dans A_1 . On voit qu'un tel idéal I est forcément un k-espace vectoriel de dimension 1. Ainsi I est forcément de la forme, pour $a, b \in k$ fixés non tous les deux nuls

$$I = \left\{ \begin{pmatrix} \lambda a & \lambda b \\ 0 & 0 \end{pmatrix} \mid \lambda \in k \right\}.$$

Si a=0, on note l'idéal

$$I_0 = \left\{ \begin{pmatrix} 0 & \lambda \\ 0 & 0 \end{pmatrix} \mid \lambda \in k \right\}.$$

Comme $I_0 = A_1 \cap A_2$, I_0 est un idéal bilatère.

On traite maintenant le cas $a \neq 0$. On a les possibilités suivantes pour $\mu \in k$

$$I_1(\mu) = \left\{ \lambda \begin{pmatrix} 1 & \mu \\ 0 & 0 \end{pmatrix} \mid \lambda \in k \right\}.$$

Si $a, b, c \in k$

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \begin{pmatrix} 1 & \mu \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & a\mu \\ 0 & 0 \end{pmatrix}.$$

Ainsi $I_1(\mu)$ est un idéal à gauche. En revanche comme

$$\begin{pmatrix} 1 & \mu \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

on voit que $I_1(\mu)$ n'est pas un idéal à droite.

On a donc traité tous les idéaux non-nuls et stricts de A_1 . On sait de plus par le premier point que les idéaux non égaux à A sont forcément dans A_1 ou dans A_2 .

Notons

$$I_2(\mu) = \left\{ \lambda \begin{pmatrix} 0 & \mu \\ 0 & 1 \end{pmatrix} \mid \lambda \in k \right\}.$$

Par symétrie (l'isomorphisme entre A et A^{op} évoqué plus haut), on peut donc conclure que

$$\{0\}, I_0, A_1, A_2, A$$
 sont les idéaux bilatères

que pour $\mu_1 \in k$

 $I_1(\mu_1)$ sont les idéaux à gauche mais pas à droite

et que pour $\mu_2 \in k$

 $I_2(\mu_2)$ sont les idéaux à droite mais pas à gauche.

Barème. 10 points pour montrer que I_0 est bilatère. 10 points pour montrer que les $I_1(\mu)$ sont des idéaux à gauche. 10 points pour montrer que les $I_1(\mu)$ ne sont des idéaux pas des idéaux à droite. 20 points pour traiter les $I_2(\mu)$ (donc que ce sont des idéaux à droite et pas à gauche). 10 points pour conclure avec la liste et argumenter que ce sont les seuls.

EPFL - Printemps 2023
Anneaux et Corps
Exercice bonus 6

Prof. Zs. Patakfalvi **Exercices**

Si vous le souhaitez, vous pouvez rendre votre solution de l'exercice bonus sur la page Moodle du cours avant le mardi 30 mai, 18h.

Exercice bonus 6. Soit k un corps. On considère le corps des fonctions rationnelles k(t). Soit $a, b, c, d \in k$ avec $ad - bc \neq 0$.

1. Soit $s \in k(t)$ non-constant. Montrer qu'il existe un unique k-morphisme $\phi_s : k(t) \to k(s)$ qui envoie t sur s.

Indication. Pour l'injectivité $k[t] \to k(s)$, montrer d'abord si s = p(t) pour $p(t) \in k[t]$. Montrer ensuite pour $s = \frac{p(t)}{q(t)}$ en supposant que (p(t), q(t)) = 1. Remarquer que si un polynôme non-nul de degré n annule s, alors forcément $q(t)|p(t)^n$ dans k[t].

- 2. Pour $s = \frac{at+b}{ct+d}$, montrez que ϕ_s défini un k-automorphisme de k(t).

 En utilisant le langage de la géométrie algébrique, on peut montrer que tout k-automorphisme de k(t) est de cette forme. Ce fait n'est pas utile pour le reste de cet exercice.
- 3. Démontrez que l'association $GL(2,k) \to Aut_k(k(t))$ définie par

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} \mapsto \phi_{\frac{at+b}{ct+d}}$$

donne un homomorphisme injectif des groupes

$$\alpha: \mathrm{PGL}(2,k) \hookrightarrow \mathrm{Aut}_k(k(t)).$$

- 4. Pour les éléments $g \in PGL(2, k)$ suivants, si $G = \langle \alpha(g) \rangle$, calculer $d = [k(t) : k(t)^G]$.
 - (a) Calculer ce degré avec

$$g = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

(b) Supposons que char $(k) \neq 2$ et que k possède une racine primitive n-ième de l'unité (un élément d'ordre n dans le groupe multiplicatif k^{\times}) qu'on note ξ . Calculer ce degré avec

$$g = \begin{pmatrix} \xi + \frac{1}{\xi} & -\xi + \frac{1}{\xi} \\ -\xi + \frac{1}{\xi} & \xi + \frac{1}{\xi} \end{pmatrix}.$$

Exercice bonus 2.

Définition. Un anneau commutatif A et dit connexe si pour tout $a, b \in A$ tel que

$$a+b=1$$
 et $ab=0$

alors soit a = 0 et b = 1, soit a = 1 et b = 0.

1. Montrer qu'un anneau commutatif est connexe si et seulement les seuls idempotents de A sont 0 et 1.

On dit que $e \in A$ un idempotent est un *idempotent minimal* si eA est un anneau connexe non-nul avec l'addition et la multiplication venant de A avec e comme élément neutre. On pose

$$\pi_0(A) = \{e \in A \mid e \text{ est un idempotent minimal}\}\$$

Remarquer que A est connexe si et seulement si $\pi_0(A) = \{1\}.$

2. Soit $(A_i)_{i=1}^n$ une collection finie d'anneaux connexes. Montrer que

$$|\pi_0(\prod_{i=1}^n A_i)| = n.$$

3. Montrer que

$$|\pi_0(\mathbb{Q}[\mathbb{Z}/4\mathbb{Z}])| = 3.$$

Solution.

1. Supposons tout d'abord que A est connexe. Soit $e \in A$ un idempotent. Alors e + (1 - e) = 1 et e(1 - e) = 0. Comme A est connexe, soit e = 0 ou e = 1. Réciproquement si les seuls idempotents sont 1 et 0, et $a, b \in A$ sont tels que a + b = 1 et ab = 0, alors $a = a(a + b) = a^2 + ab = a^2$. Ainsi a est idempotent et donc a = 0 ou a = 1, et par suite b = 1 ou b = 0.

Barème. 10 points pour chaque direction de l'équivalence.

2. Soit $(e_i) \in \prod_{i=1}^n A_i$ un idempotent minimal. Notons qu'alors e_i est un idempotent dans A_i . Ainsi, comme les A_i sont supposés connexes, soit $e_i = 0$ ou $e_i = 1$. Comme un produit $B \times C$ d'anneau non-nuls n'est jamais connexe car

$$(1_B, 0) + (0, 1_C) = 1_{B \times C}$$
 $(1_B, 0)(0, 1_C) = 0_{B \times C}$

on voit qu'il existe un unique i_0 tel que $e_{i_0}=1$. Dès lors il y a exactement n idempotents minimaux donnés par $f_i=(\delta_{ij})$ pour $1\leq i\leq n$.

Barème. 10 points pour déterminer la forme des idempotents. 10 points pour identifier la forme des idempotents minimaux/un produit d'anneau non-nuls n'est jamais connexe. 10 points pour conclure/trouver les n idempotents minimaux.

3. Pour éviter toute confusion, on note $G = \mathbb{Z}/4\mathbb{Z}$, avec générateur x. On note que $\mathbb{Q}[G]$ est un \mathbb{Q} -espace vectoriel de dimension 4, de base $1, x, x^2, x^4$ par définition d'anneau de groupe. On montre dans ce qui suit que le noyau de la surjection $\mathbb{Q}[t] \xrightarrow{\text{ev}_x} \mathbb{Q}[G]$ est (t^4-1) . Premièrement, comme $x^4 = 1$, il suit que cet idéal est inclus dans le noyau. Supposons qu'il existe un polynôme $p(t) = at^3 + bt^2 + ct + d \in \mathbb{Q}[t]$ de degré au plus 3 tel que p(x) = 0. Alors,

$$ax^3 + bx^2 + cx + d = 0.$$

Comme $1, x, x^2, x^3$ est une \mathbb{Q} -base de $\mathbb{Q}[G]$, il suit que a = b = c = d = 0. Soit maintenant $f(t) \in \mathbb{Q}[t]$ tel que f(x) = 0 avec $\deg(f(t)) > 3$. Par division euclidienne il existe $q(t), r(t) \in \mathbb{Q}[t]$ avec $\deg(r(t)) \leq 3$ avec

$$f(t) = q(t)(t^4 - 1) + r(t).$$

Ainsi r(x) = 0 et par suite grâce à l'étape précédente r(t) = 0. Ainsi on conclu par double inclusion que $(t^4 - 1) = \ker(\operatorname{ev}_x)$. On a dès lors,

$$\mathbb{Q}[G] \cong \mathbb{Q}[t]/(t^4 - 1).$$

Notons que $t^4 - 1 = (t^2 - 1)(t^2 + 1)$. On voit que la somme des idéaux $(t^2 - 1)$ et $(t^2 + 1)$ contient 1 car

$$\frac{t^2+1}{2} + \frac{1-t^2}{2} = 1.$$

Ainsi, par le théorème des restes chinois, on a,

$$\mathbb{Q}[t]/(t^4-1) \cong \mathbb{Q}[t]/(t^2-1) \times \mathbb{Q}[t]/(t^2+1).$$

Comme $t^2 - 1 = (t-1)(t+1)$ et que la somme des idéaux (t-1) et (t+1) contient 1 car

$$\frac{t+1}{2} + \frac{1-t}{2} = 1$$

on peut encore appliquer le théorème des restes chinois pour obtenir,

$$\mathbb{Q}[t]/(t^4-1) \cong \mathbb{Q}[t]/(t-1) \times \mathbb{Q}[t]/(t+1) \times \mathbb{Q}[t]/(t^2+1).$$

Avant de conclure, on montre que le noyau de la surjection $\mathbb{Q}[t] \xrightarrow{\operatorname{ev}_i} \mathbb{Q}[i]$ est (t^2+1) . Comme $\mathbb{Q}[i]$ est un \mathbb{Q} -espace vectoriel de dimension 2, il suit que si $f(t) \in \ker(\operatorname{ev}_i)$ avec $\deg(f(t)) \leq 2$, alors f(t) = 0. Pour un élément quelconque du noyau, on se ramène à ce cas par division euclidienne, comme plus haut.

Ainsi, on conclut que

$$\mathbb{Q}[G] \cong \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}[i].$$

Comme un anneau intègre est connexe (car si $a, b \in A$ un anneau intègre tel que ab = 0, alors a ou b = 0.) On conclut ainsi que

$$|\pi_0(\mathbb{Q}[\mathbb{Z}/4\mathbb{Z}])| = 3.$$

Barème. 20 points pour monter $\mathbb{Q}[G] \cong \mathbb{Q}[t]/(t^4-1)$. 10+10 points pour utiliser deux fois le théorème des restes chinois. 10 points pour montrer que $\mathbb{Q}[i] \cong \mathbb{Q}[t]/(t^2+1)$. 10 points pour conclure.

Remarque. Les idempotents minimaux de $\mathbb{Q}[G]$ sont

$$\frac{x^3 + x^2 + x + 1}{4}$$
, $\frac{1 - x + x^2 - x^3}{4}$, $\frac{1 - x^2}{2}$.

Remarque. Pour montrer que $\mathbb{Q}[G]$ est isomorphe à $\mathbb{Q}[t]/(t^4-1)$ on peut utiliser l'adjonction $\mathbb{Q}[G] \dashv (-)^{\times}$ entre les \mathbb{Q} -algèbres et les groupes abéliens pour conclure que ces deux anneaux co-représentent tous deux le foncteur $\xi_4 : \mathbb{Q}$ -Alg \to Set

$$A \mapsto \{a \in A \mid a^4 = 1\}.$$

EPFL - Printemps 2023		
Anneaux et Corps		
Corrigé – bonus 3		

Prof. Zs. Patakfalvi **Exercices**

Exercice bonus 3. Soit p un nombre premier. On dit qu'un anneau commutatif est de caractéristique p si le morphisme $\mathbb{Z} \to A$ envoie p sur zéro et donc factorise par $\mathbb{F}_p \to A$. Dans cet exercice, on travaille uniquement avec des anneaux non-nuls commutatifs de caractéristique p. On note $F: A \to A$ le morphisme de Frobenius $a \mapsto a^p$. Voir Série 3, exercice 4.3.

- 1. Montrer que le morphisme $\mathbb{F}_p \to A$ est injectif.
- 2. Montrer que $A^F := \{a \in A \mid F(a) = a\}$ est un sous-anneau.
- 3. Montrer que si A est intègre et $A = A^F$, alors $\mathbb{F}_p \to A$ est un isomorphisme.
- 4. Montrer que si $A = A^F$, alors tout idéal premier est maximal.
- 5. Montrer que $\pi_0(A) = \pi_0(A^F)$. (Voir exercice bonus 2.)

Solution.

1. Comme A est non-nul, et que les seuls idéaux de \mathbb{F}_p sont l'idéal nul et \mathbb{F}_p , il suit que $A \to \mathbb{F}_p$ est injectif. En effet, si le noyau est égal à \mathbb{F}_p cela implique que 1 est envoyé sur 0 et donc que l'anneau d'arrivé est nul, ce qui est exclu par hypothèse.

Barème. 10 points.

2. Cela suit du fait que F est un morphisme d'anneau. En effet, $0,1\in A^F$ et si $a,b\in A^F$ alors F(a+b)=F(a)+F(b)=a+b et F(ab)=F(a)F(b)=ab. On conclut donc que A^F est un sous-ensemble de A qui contient 0 et 1, et stable par addition et multiplication, donc un sous-anneau.

Barème. 10 points.

3. Si $a \in A$ est nilpotent, alors il existe n tel que $a^n = 0$. Soit alors N suffisamment grand tel que $p^N \ge n$. On obtient alors $a = a^{p^N} = 0$. On conclut donc que $\operatorname{nil}(A) = 0$.

Barème. 10 points.

4. On sait déjà par le premier point que $\mathbb{F}_p \to A$ est injectif. Notons que $A = A^F$ signifie que $a^p = a$ pour tout $a \in A$.

Par l'absurde on suppose que $|A| \ge p+1$. Notons dès lors $a_1, \ldots a_{p+1}$ des éléments distincts de A. On mène la division euclidienne de t^p-t par $t-a_1$ pour obtenir un $f_1(t) \in A[t]$ tel que

$$t^p - t = (t - a_1)f(t) + a$$

pour $a \in A$. En évaluant en a_1 , on obtient que a = 0. Maintenant, on utilise de manière cruciale que A est intègre pour voir que pour $i \geq 2$ on a $f(a_i) = 0$. En effet en évaluant en a_i on a

$$0 = (a_i - a_1)f(a_i),$$

et donc comme $a_1 \neq a_i$ et que A est intègre, on voit que $f(a_i) = 0$. Ainsi, on peut continuer par récurence sur $2 \leq i \leq p+1$ obtenir par le même procédé que

$$t^{p} - t = (t - a_{1}) \cdot \cdot \cdot (t - a_{n+1}) g(t)$$

pour un $g(t) \in A[t]$. Ainsi par la formule du degré (notons qu'ici intègre n'est pas utilisé car tous les polynômes en jeu sont moniques) on voit que

$$p = \deg(t^p - t) > p + 1,$$

une contradiction.

Barème. 10 points pour avoir l'idée de diviser le polynôme $t^p - t$. 10 points pour utiliser l'hypothèse d'intégrité. 10 points si la preuve est correcte.

5. Soit \mathfrak{p} premier de A. Alors A/\mathfrak{p} est encore fixé par le Frobenius. On conclut alors avec le point précédent. En effet, il suit que le morphisme

$$\mathbb{F}_p \to A \to A/\mathfrak{p}$$

est un isomorphisme. Dès lors comme A/\mathfrak{p} est un corps, il suit que \mathfrak{p} est maximal.

Barème. 10 points pour se réduire au cas intègre. 10 points pour utiliser le point précédent et conclure.

6. On commence par montrer que A est connexe si et seulement si A^F est connexe. Tout d'abord, notons que tout les idempotents de A sont dans A^F et donc les idempotents de A et de A^F sont en bijection. Comme un anneau non-nul est connexe si et seulement si les seuls idempotents sont 0 et 1, notre assertion suit.

Notons désormais que $\pi_0(A) = \pi_0(A^F)$ suivrait de, si $e \in A$ est un idempotent

$$(eA)^F = eA^F.$$

On montre alors cette dernière égalité. Notons que $eA^F \subset (eA)^F$. Pour l'inclusion inverse, il suffit simplement de noter que si $(ea)^p = ea$, alors $ea = e(ea) \in eA^F$.

Barème. Si on a procédé comme au-dessus, 10 points pour montrer que A et connexe si et seulement si A^F est connexe, puis 10 points pour conclure.

EPFL - Printemps 20)23	
Anneaux et Corps		
Corrigé – bonus 4		

Prof. Zs. Patakfalvi **Exercices**

Exercice bonus 4. Soit $A = \mathbb{Z}[i\sqrt{d}]$ pour un $d \ge 1$. Pour un $a + bi\sqrt{d} \in \mathbb{Z}[i\sqrt{d}]$ on pose la norme $N(a + bi\sqrt{d}) = a^2 + db^2$

1. Soit $x \in A$ non-nul. Montrer que

$$|A/(x)| = N(x).$$

(C'est à dire que la cardinalité du quotient est égale à la norme de x.)

Remarquer que A est un groupe abélien libre de rang 2 et que le quotient A/(x) est égal au quotient de A par l'image de l'application linéaire $\cdot x:A\to A$, et utiliser la forme normale de Smith pour conclure.

Dans le point 2, on considère (B, σ) un anneau euclidien quelconque qui n'est pas un corps.

2. Montrer qu'il existe un $b \in B$ non-nul et non inversible tel que

$$|B/(b)| \le |B^{\times}| + 1.$$

3. Montrer que si d > 3, alors A n'est pas Euclidien. (Il ne s'agit pas de montrer que N n'est pas une fonction Euclidienne pour A, mais qu'il n'en existe aucune.)

Solution.

1. Prenons $x = a + bi\sqrt{d} \in A$ non-nul. On prend $(1, i\sqrt{d})$ comme \mathbb{Z} -base de A. Dès-lors il suit que la matrice de $\cdot x$ dans cette base est

$$\begin{pmatrix} a & -db \\ b & a \end{pmatrix}$$
.

Le déterminant de cette matrice qui est égal $a^2 + bd^2 = N(x)$. Par la forme normale de Smith, il existe des automorphismes de groupes abéliens $f, g: A \to A$ tel que $f \circ (\cdot x) \circ g$ est sous forme diagonale dans la base $(1, i\sqrt{d})$. Soit donc $\alpha_1, \alpha_2 \in \mathbb{Z}$ tel que la matrice soit de forme,

$$\begin{pmatrix} \alpha_1 & 0 \\ 0 & \alpha_2 \end{pmatrix}.$$

avec donc $|\alpha_1\alpha_2|=N(x)$. Ainsi on peut identifier A/(x) en tant que groupe abélien à

$$\mathbb{Z}/\alpha_1\mathbb{Z} \oplus \mathbb{Z}/\alpha_2\mathbb{Z}$$

ce qui conclut. (Noter que comme le déterminant est non nul α_1 et α_2 sont aussi non-nuls, et donc ces groupes sont finis, de cardinal $|\alpha_1\alpha_2|$.)

Barème. 10 points pour identifier la norme d'un élément non-nul x avec le déterminant de l'application $\cdot x$. 20 points pour utiliser la forme normale de Smith et pour exprimer A/(x) comme une somme de groupe abélien finis. 10 points pour conclure.

2. Soit $b \in B$ non-nul et non-inversible (B n'est pas un corps) tel que $\sigma(b)$ soit minimal parmi les éléments non-nuls et non-inversibles. Soit $b' \in B$ quelconque. Comme b est non-nul, par division Euclidienne, il existe $q, r \in B$ tel que

$$b' = bq + r,$$

avec $\sigma(r) < \sigma(b)$ ou r = 0, en particulier r est nul ou inversible. Dès lors, il suit que

$$|B/(b)| \le |B^{\times}| + 1.$$

Barème. 20 points pour l'idée de prendre b non-nul et non inversible avec $\sigma(b)$ minimal. 10 points pour conclure avec la division euclidienne.

3. Supposons par l'absurde que A soit Euclidien. Soit dès lors un élément $x=a+bi\sqrt{d}\in A$ comme au point précédent. Avec la norme multiplicative $N:A\to\mathbb{N}$, on voit que les seuls inversibles de A sont 1 et -1. Dès lors, une combinaison deux deux points précédents donne,

$$1 < a^2 + b^2 d \le 3.$$

Comme d > 3 on voit que b = 0. Comme 2 et 3 ne sont pas des carrés d'entiers, on aboutit à une contradiction.

Barème. 10 points pour identifier les inversibles de A à $\{1, -1\}$. 20 points pour utiliser les deux points précédents et conclure.

Exercice bonus 5. Soit $n \ge 1$ un entier. On dit qu'une racine n-ième de l'unité ξ est primitive si n est le plus petit entier tel que $\xi^n = 1$. On pose,

$$\Phi_n(t) = \prod_{\substack{\xi \text{ racine} \\ \text{primitive} \\ n \text{-lempton} \\ de \text{ Punit 6}}} (t - \xi) \in \mathbb{C}[t].$$

- 1. Montrer que $t^n 1 = \prod_{d|n} \Phi_d(t)$ et que $\Phi_n(t) \in \mathbb{Z}[t]$.
- 2. Soit p un nombre premier et $n \ge 1$. En utilisant le critère d'Eisenstein et le changement de variable $t \mapsto t + 1$, montrer que $\Phi_{p^n}(t)$ est irréductible. (c.f. exemple 3.9.4.(2))
- 3. Soit $n \geq 1$ un entier et p un premier qui est premier avec n. On note ξ_n une racine primitive n-ième de l'unité. Soit $m(t) \in \mathbb{Q}[t]$ le polynôme minimal de ξ_n . Montrer que $m(t) \in \mathbb{Z}[t]$. Montrer que si ξ est une racine de m(t), alors ξ^p est une racine de m(t). En déduire que $m(t) = \Phi_n(t)$.

Indication: on pourra montrer par l'absurde que si ξ^p n'est pas une racine de m(t) alors t^n-1 a une racine double modulo p, ce qui est absurde comme (n,p)=1 (Voir Proposition 4.4.10).

4. Montrer qu'il existe une infinité de premiers p tel que $\Phi_n(t)$ a une racine dans $\mathbb{F}_p[t]$. En déduire qu'il existe une infinité de premiers p tel que $p \equiv 1 \mod n$.

Indication: pour tout m suffisamment grand si un nombre premier p divise $\Phi_n(m!)$ alors p > m.

Solution.

1. Notons que comme le produit de toutes les racines n-ièmes de l'unité sont égales au produit des racines primitives d-ièmes pour $d \mid n$, on a

$$t^n - 1 = \prod_{d|n} \Phi_d(t).$$

On montre par récurence sur n que $\Phi_n(t)$ a coefficients entiers. Pour n=1, on a $\Phi_1(t)=(t-1)$. Pour n>1 notons que $\Phi_n(t)$ est le résultat de la division euclidienne dans $\mathbb{Z}[t]$ de t^n-1 par $\prod_{d|n,d\neq n}\Phi_d(t)$ et ce dernier polynôme est bel et bien à coefficients entiers par récurence.

Barème. 10 pts pour $t^n - 1 = \prod_{d|n} \Phi_d(t)$, et 10 pts pour montrer que les coefficients du polynôme sont entiers.

2. Notons tout d'abord que

$$t^p - 1 = (t - 1)\Phi_p(t),$$

et donc que $\Phi_p(t) = t^{p-1} + t^{p-2} + \cdots + 1$. Notons également que

$$t^{p^n} - 1 = (t^{p^{n-1}} - 1)\Phi_{p^n}(t),$$

et donc que $\Phi_{p^n}(t) = \Phi_p(t^{p^{n-1}})$. Notons que $\Phi_{p^n}(t+1) \equiv (\Phi_p(t+1))^{p^{n+1}} = t^{p^{n+1}} \mod p$ par le raisonnement de l'exemple 3.9.4.(2). Comme de plus le coefficient constant de $\Phi_{p^n}(t+1)$ est égal à p, le critère d'Einsenstein permet de conclure à l'irréductibilité de $\Phi_{p^n}(t)$.

Barème. 10 pts pour montrer que $\Phi_{p^n}(t) = \Phi_p(t^{p^{n-1}})$. 10 pts pour conclure avec Eisenstein.

3. Écrivons $t^n - 1 = m(t)g(t)$ avec $g(t) \in \mathbb{Q}$. Comme m(t) et $t^n - 1$ ont coefficients dominant 1, g aussi. Dès lors pour $c, d \in \mathbb{Z}$, on a

$$t^{n} - 1 = \frac{1}{c}(cm(t))\frac{1}{d}(dg(t))$$

pour $cm(t), dg(t) \in \mathbb{Z}[t]$ primitifs. Par le lemme de Gauss (version II), on a $\frac{1}{cd} \in \mathbb{Z}^{\times}$. Donc $\frac{1}{d} = \pm c \in \mathbb{Z}$ et donc $c, d = \pm 1$. Ainsi $m(t) \in \mathbb{Z}[t]$.

Soit ξ une racine quelconque de m(t) et par l'absurde supposons que ξ^p ne soit pas une racine de m(t). Alors si $t^n - 1 = m(t)f(t)$ on a que ξ^p est une racine de f(t). Comme m(t) est irréductible dans $\mathbb{Q}[t]$, notons que c'est aussi le poolynôme minimal de ξ . Dès lors $m(t)|f(t^p)$ dans $\mathbb{Q}[t]$ et donc dans $\mathbb{Z}[t]$ comme ces polynômes sont primitifs. En réduisant modulo p (ce qu'on dénote par (-) dans la suite), on voit alors que $m(t)|f(t^p) = (f(t))^p$. Dès lors, m(t) et f(t) ont une racine commune, car les racines (sans compter les multiplicités) de f(t) et $(f(t))^p$ sont les mêmes. Mais comme (n,p)=1, on obtient une contradiction.

Notons que toute racine primitive n-ième de l'unité est de la forme $\xi_n^{p_1\cdots p_r}$ avec $(p_i,n)=1$. On obtient par récurence sur r que toute racine primitive n-ième de l'unité est une racine de m(t) et donc que $\Phi_n(t)=m(t)$.

Barème. 10 pts pour montrer que m(t) est à coefficients entiers. 20 pts pour montrer si ξ est une racine de m(t) alors, ξ^p aussi. 5 pts pour $\Phi_n(t) = m(t)$.

4. Soit m suffisamment grand pour que $\Phi_n(m!) \neq 0, 1, -1$. Soit alors p premier tel que $p \mid \Phi_n(m!)$. Alors $p \mid (m!)^n - 1$. Si $p \leq m$, on aurait $p \mid 1$, ce qui est absurde. Ainsi, il suit qu'il existe une infinité de premiers tel que $\overline{\Phi_n(t)} \in \mathbb{F}_p[t]$ a une racine dans \mathbb{F}_p . En effet, on peut prendre un $m' \geq p$ puis appliquer à nouveau l'argument pour m' pour trouver un premier $p' > m' \geq p$ et ainsi de suite pour construire une suite infinie croissante de premiers où $\overline{\Phi_n(t)}$ s'annule.

Notons que n est fixé et donc sans perte de généralité (p,n)=1. Notons k le corps de décomposition de $\overline{t^n-1}\in \mathbb{F}_p[t]$. On montre par récurence croissante sur les diviseurs d de n que les racines de $\overline{\Phi_d(t)}$ dans k sont exactement les racines primitives d-ième de l'unité. Pour d=1, l'assertion est vérifiée car $\overline{\Phi_1(t)}=\overline{t-1}$. Traitions le pas d'induction. Comme (p,d)=1 le polynôme $\overline{t^d-1}\in \mathbb{F}_p[t]$ n'a pas de racines multiples. Ainsi le sous-groupe multiplicatif des racines d-ième de l'unité est de cardinal d. Comme tous les éléments de ce sous-groupe multiplicatif sont des racines de t^e-1 pour e l'exposant du groupe, on a forcément d=e sinon t^e-1 aurait trop de racines. Dés lors ce sous-groupe est cyclique d'ordre d. Grâce à la récurence les racines de $\overline{\Phi_{d'}(t)}$ pour tout diviseur $d'\neq d$ de d sont les racines primitives d'-ième de l'unité, c'est à dire les éléments multiplicatifs d'ordre d'. Par suite, en utilisant la formule du point 1., les racines de $\overline{\Phi_d(t)}$ sont forcément les éléments restants du groupe cyclique formé par les racines de t^d-1 , c'est à dire les éléments d'ordre d.

Dès lors si $\overline{\Phi_n(t)} \in \mathbb{F}_p[t]$ a une racine dans \mathbb{F}_p , cela implique qu'il existe une racine primitive n-ième de l'unité dans \mathbb{F}_p . En particulier, par Lagrange, $n \mid p-1$, et donc que $p \equiv 1 \mod n$.

Barème. 10 pts pour montrer qu'il y a a une infinité de premiers tel que $\overline{\Phi_n(t)} \in \mathbb{F}_p[t]$ a une racine dans \mathbb{F}_p . 10 pts pour montrer que les racines de $\overline{\Phi_n(t)}$ sont des racines primitives de l'unité (noter que l'hypothèse (p,n)=1 est importante pour cela.) 5 pts pour conclure avec Lagrange.