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Rings and modules Exercises

Sheet 9 - Solutions

Exercise 1. Show the following:

(1) Prove that the only prime ideal of height zero in a domain is the ideal �0�.
(2) Prove that a prime ideal of height 1 in a UFD is principal.

(3) Compute the prime ideals of height zero in R�x, y�«�xy�.
�Hint : Recall that there is a one-to-one correspondence between the prime ideals R
containing I and the prime ideals of RªI.�

Proof. (1) In any ring R, �0� N p for every prime ideal p, hence �0� is prime (and thus R
a domain) if and only if it is the only prime ideal of height zero.

(2) Let p be a prime ideal of height one. We will prove that p contains a prime element p.
If p contains a prime element p then �p� � p, since �p� N p and the only prime ideal
that is strictly contained in p is �0� by the previous point. Let f " p be non-zero (this
is possible since p j 0 because p has height one), let f � p

α1

1 �p
αr
r be the unique (up

to multiplication by units) prime decomposition of f . Since p is prime, we must have
pi " p for some i " r1, . . . rx. We conclude that p � �pi�.

(3) The prime ideals of height zero in R�x, y�«�xy� correspond to the primes p N R�x, y�
that contain xy and that do not contain any other prime ideal p

¬
such that xy " p

¬
.

Suppose xy " p, then either x " p or y " p, hence either �x� N p or �y� N p. Now since
�x� and �y� both are prime ideals that contain xy we conclude that p � �x� or p � �y�.

□

Exercise 2. Show the following:

(1) If R is a domain with dimR � 0, then R is a �eld.
(2) We say that a ring R is reduced if there are no nilpotent elements in R. That is, if

r " R is such that r
n
� 0 for some n, then r � 0. Give an example of a reduced ring

R of dimension zero which is not a �eld.

Proof. (1) A ring R is a domain if and only if the zero ideal is prime. A ring R is a �eld if
and only if the zero ideal is maximal. Therefore, a domain is a �eld if and only if it is
of dimension zero.

(2) Let F be a �eld and de�ne a ring structure on R � F �F by coordinatewise multiplica-
tion. To compute the dimension of R we investigate its prime ideals. Let p be a prime
ideal. As �1, 0� � �0, 1� � �0, 0� " p, we must have either �1, 0� " p or �0, 1� " p. Hence
either F � r0x N p or r0x � F N p. Suppose we are in the �rst case; the other case is
completely symmetric. If F � r0x à p then there is an element �a, b� " p with b j 0,
but then �1, 0�, �a, b� is an F basis of F � F and thus F � F � p, contradiction. Thus
we conclude p � F �r0x. This is indeed a prime ideal, because if �a, b���c, d� " F �r0x
then bd � 0 and thus either �a, b� " F � r0x or �c, d� " F � r0x. Together with the
case with �ipped coordinates, we conclude that the prime ideals of F �F are precisely
F � r0x and r0x�F . Hence, as neither contains the other, F �F has dimension 0. On
the other hand, suppose that �a, b�n � �an, bn� � �0, 0� for some �a, b� " F � F and
n ' 1. Then a

n
� 0 and b

n
� 0, since F is reduced this means that a � 0 and b � 0. So

F � F is reduced.
1
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□

Exercise 3. Solve the following exercises:

(1) Prove that every Artinian ring has dimension 0.

(2) Compute the dimension of the ring Z�x�«�4, x2�.

Proof. (1) By Exercise 1.2 of Sheet 1, every prime ideal in an Artinian ring is maximal.
Hence every prime ideal has height 0, and thus an Artinian ring has dimension 0.

(2) The ring Z�x�«�4, x2� is �nite as a set (as a Z-module it is isomorphic to �Zª4Z�
h2
),

so in particular Artinian. Hence by the previous point, it has dimension 0.
(3) We will show that for any PID R, we have dimR�x� � 2. This will require some serious

work!
` Let π " R be a non-zero prime element (R is not a �eld). We then have an chain
of inclusions

0 N �π� N �π, x�
and each ideal is prime. Indeed, the quotients are respectively R�x�, R©�π��x�
and R©�π� which are all domains. Thus, the height of �π, x� is at least 2, and
hence dim�R�x�� ' 2.

` Let us start by studying prime ideals of height 1. We will show that if p is a
non-zero prime ideal of R�x�, then p has height 1 if and only if it is principal.
Since R is a PID, it is in particular a UFD, so by Gauss' lemma R�x� is also a
UFD. Therefore by Exercise 1.2 any prime ideal of height 1 is principal. To see
the converse, let p � �p� be a principal prime ideal of R�x�, and let q N p be a
prime sub-ideal. We want to show that if q j 0, then q � p.
By the same argument as in Exercise 1.2 there would exist a non-zero prime
element q " q. But then, p divides q, so they must be equal, i.e. q � p.

□

Exercise 4. Let R be a PID which is not a �eld. The goal of this exercise is to show that
dimR�x� � 2 (in particular dim k�x, y� � 2).

` Show that dimR�x� ' 2.
` Let p be a non-zero prime ideal of R�x�. Show that p has height 1 if and only if it is
principal.

` Let K � Frac�R�. For any prime ideal p in R�x�, de�ne p
e
to be the ideal of K�x�

generated by the elements of p. Show that if p is a prime ideal of height 2, then
p
e
� K�x�. Conclude that there exists π " R irreducible such that π " p.

�Hint: Recall the notion of primitive polynomial, and the statements around Gauss'
lemma (see for example proposition 3.8.13 in the "Anneaux et corps" notes).�

` Conclude that any prime ideal of height 2 is maximal, and deduce that dim�R�x�� � 2.

�Remark: It is a general fact that given a Noetherian commutative ring R of �nite Krull
dimension, dim�R�x�� � dim�R��1. This is not so complicated once we have proven Krull's
Hauptidealsatz, but we unfortunately do not have the time to cover this in the course. See
any book in commutative algebra if you want to know more about this.�
Proof. ` Let π " R be a non-zero prime element (R is not a �eld). We then have an

chain of inclusions
0 N �π� N �π, x�
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and each ideal is prime. Indeed, the quotients are respectively R�x�, R©�π��x� and
R©�π� which are all domains. Thus, the height of �π, x� is at least 2, and hence
dim�R�x�� ' 2.

` Since R is a PID, it is in particular a UFD, so by Gauss' lemma R�x� is also a UFD.
Therefore by Exercise 2.2 any prime ideal of height 1 is principal. To see the converse,
let p � �p� be a principal prime ideal of R�x�, and let q N p be a prime sub-ideal. We
want to show that if q j 0, q � p.
If it was not the case, by the same argument as in Exercise 2.2 there would exist a

non-zero prime element q " q. But then, p divides q, so they must be equal, i.e. q � p.
` Let q N p be a prime sub-ideal of height 1, and write q � �q� for q a prime element. If
q " R, then p

e
contains q, which is invertible in K�x�! Therefore p

e
� K�x�.

Now let us deal with the case q " R. Then q is a primitive polynomial, and hence
by Gauss' lemma it gives an irreducible polynomial in K�x�. Therefore �q� � q

e
is a

maximal ideal in K�x�. Since q
e
N p

e
, we are left to show that q

e
j p

e
. If it was the

case, then for any a " p, a " q
e
� �q�, so we can write

a �
q
r

with r " R. Thus gives ra � q, and since q is primitive, r must be a unit. Therefore
this would imply p � q, but this is impossible since p has height 2.

In both cases, we have proven that p
e
� K�x�, so 1 " p

e
. Write

1 �=
i

ai
bi
pi

with ai, bi " R and pi " p. Multiplying by the product of the bi's gives that p=R j 0.
Writing this elements as a product of prime elements (which must all be in R!), we
conclude that p must contain a prime element in R.

` Let π " R=p be a prime element, and let p denote the image of p through the quotient
R�x� � R�x�©�π� 	 R©�π��x�. Since p is not principal (its height is not 1), p is a
non-zero prime ideal of R©�π��x�. However R is a PID, so R©�π� is a �eld, whence
R©�π��x� is a PID. This means that p is necessarily a maximal ideal, so by the corre-
spondence theorem p is maximal too.

To recapitulate, we have shown that any prime of height 2 is maximal, so there
cannot be any prime of height % 2, which gives us dim�R�x�� & 2. Thus we win thanks
to the �rst point.

□

Exercise 5 (Nakayama's Lemma). Let R be a ring and let M be a �nitely generated
R-module. Show the following:

(1) Let I be an ideal of R such that IM � M . Then there exists x " 1 � I such that
xM � 0.
�Hint: The proof is similar to the direction �3� � �1� in Proposition 6.2.3 of the
lecture notes.�

(2) Suppose now that the ring R is local, i.e., that there is a unique maximal ideal m of
R. Show that if mM �M , then M � 0.
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(3) For a ring R denote by Jac�R� the intersection of all maximal ideals of R; this is called
the Jacobson radical of R (note also that nil�R� N Jac�R�). Show that if there is an
ideal I L Jac�R� such that IM � M , then this implies that M � 0. This generalizes
the previous point to any ring.

�Hint: Prove that in �2�, �3� the element x, whose existence is assured by �1�, is in fact
invertible.�

Remark 0.1. Nakayama's lemma is a EXTREMELY powerful tool in commutative algebra
and algebraic geometry, so keep it mind this exists. You should really (really) remember it!
To give a hint of its tremendous power, recall you had an exercise about showing that

if R is a commutative ring, M a �nitely generated module and f �M � M a surjective
endomorphism, then f is an isomorphism. Actually, the statement follows immediately by
considering M as an R�x�-module via x �m � f�m�, and taking I � �x� in (1).
Recall that when you proved it in an early exercise sheet, you had a Noetherian assumption

on R (and it was fundamental to the proof, have fun trying to prove it directly without this
assumption!). With this argument, you don't need it!

Proof. (1) Let m1, ...,mn be generators of M . As IM � M , we can express every m " M
as an I-linear combination of m1, ...,mn. In particular, there is a matrix A with entries

in I such that Am � m, where m " M
hn

is the column vector with i
th

entry mi.
Therefore �Idn�A�m � 0. Multiplying by the adjugate of the matrix A � Idn implies
that if x �� det�Idn�A� then xmi � 0 for all i. Hence xM � 0, since the mi's generate
M . If we can prove that x " 1 � I then we are done. By expanding the determinant,
we have

x � =
σ"Sn

sgn�σ�
n

5
i�1

�δi,σ�i� � ai,σ�i��.

The only term in this sum which isn't in I is the one corresponding to σ � id, which
is 4n

i�1�1 � ai,i�. This is in 1 � I, so x " 1 � I and we are done.
(2) By the previous point, there is x " 1 � m such that xM � 0. But then x � m since

1 � m. Suppose that x is not a unit. Then x is contained in some proper maximal ideal
by Zorn's lemma, but this is a contradiction since x � m and m is the only maximal
ideal of R.

(3) Again by �1�, there is x " 1� I such that xM � 0. Suppose that x is not a unit, then
there is a maximal ideal m containing x. But then also x " 1 �m as I N Jac�R�, and
thus 1 " m, which is absurd.

□

Exercise 6. Let R be a commutative ring which is an integral domain but not a �eld, and
let F be the fraction �eld of R. Show that F is not �nitely generated as an R-module.

Proof. Suppose on the contrary that F is a �nitely generated R-module, and let y " R be
a non-invertible element. Since yF � F , we know by Nakayama's lemma (the version as in
Exercise 4.1) that there exists x " 1� yR such that xM � 0. Writing x � 1� yr, we obtain
that

0 � �1 � yr� � 1 � 1 � yr,

so yr � �1. Hence, y is invertible, contradicting our assumption. □
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Exercise 7. Let R � Fq��t�� be the ring of power-series in the variable t over the �nite
�eld with q elements Fq.
Recall that as a set, R is the set of formal power-series f � <n'0 ant

n
with coe�cients an "

Fq. For two such power series, <n'0 ant
n
and <n'0 bnt

n
, one de�nes the addition to be the

power-series<n'0�an�bn�tn and multiplication to be the power-series<n'0�<
n

k�0 akbn�k�t
n
.

Recall (or do) the two following exercises from "Anneaux et corps":

(1) If f " R ¯ �t�, then f is invertible (and hence R is a local ring with maximal ideal �t�).
(2) A formal Laurent series over the �eld Fq is de�ned in a similar way to a formal power

series, except that we also allow �nitely many terms of negative degree. That is, series
of the form f � <n'N ant

n
where for some N " Z. De�ne a natural ring structure on

this set and show that with this ring structure the ring of formal Laurent series over
Fq, usually denoted Fq��t��, is equal to the fraction �eld of R.

Now let us go to the actual exercise:

(3) Show that trdegFq
�Frac�R�� is in�nite.

�Hint : show that Fq�t1, . . . , tr� is countable, and R is not.�
(4) Show that dimR � 1 and hence show that Theorem 6.1.12 in the course notes does

not work with non-�nitely-generated algebras.

Proof. (1) Let f � a0 �<n%0 ant
n
where a0 j 0 de�ne f

�1
� <n bnt

n
where �bn� is de�ned

recursively by b0 �
1

a0
and bn � �

1

a0
<n

i�1 aibn�i for n ' 1.

(2) Multiplication of such series can be de�ned similarly to the de�nition for formal power
series, the coe�cient of t

n
of two series with respective sequences of coe�cients ranx

and rbnx is de�ned to be: <i"Z aibn�i, this sum has only �nitely many non-zero terms,
since both bn�i and ai are zero in negative enough degrees. Again <n"Z�<i"Z aibn�i�t

n

is a Laurent series since if n is negative enough, then either ai or bn�i is zero for all
i. Note that every non-zero element of Fq��t�� can be written as the product of some
power of t and an element of f " R ¯ �t�; simply factor out the lowest power of t with
non-zero coe�cient. The former is clearly invertible, and the latter is invertible by the
previous point. Hence Fq��t�� is a �eld containing R. On the other hand, the above
argument shows that every element of Fq��t�� can be written as a fraction of elements
in R, and thus Fq��t�� � Frac�R�.

(3) We �rst note that it is su�cient to prove the hint. We have that R L Frac�R� hence
if R is not countable neither is Frac�R�. Suppose that Frac�R� has �nite transcen-
dence degree over Fq, then there exists t1, . . . tr such that Frac�R� is algebraic over
Fq�t1, . . . , tr�. If Fq�t1, . . . , tr� is countable then so is the set of polynomials with coef-
�cients in Fq�t1, . . . , tr�, and so in particular every algebraic extension of Fq�t1, . . . , tr�
is countable. Hence also Frac�R� is countable, which contradicts the hint.
So it is su�cient to show the hint. We �rst show that Fq�t1, . . . , tr� is countable. It
is clear that Fq�t1, . . . , tr� is countable, because it is a countable union of polynomi-
als of bounded degree. Thus Fq�t1, ..., tr� is countable as it is the fraction �eld of
bFq�t1, . . . , tr�. Lastly, we show that R is not countable. To see this, it su�ces to note

that the set of sequences r0, 1xN naturally injects into R, and the set of such sequences
is uncountable by Cantor's diagonal argument.

(4) For f � <n'0 ant
n
" R ¯ r0x de�ne deg f �� infrn ' 0 ¶ an j 0x. If I is an ideal of R,

then by point �1� we have f " I ¯ r0x if and only if t
deg f

" I. Hence a non-zero ideal
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I j 0 of R is generated by t
d
where d � infrdeg f ¶ f " I ¯ r0xx. Therefore, the only

prime ideals of R are �0� L �t�, and thus R has dimension 1. By the previous point,
Theorem 6.1.12 hence fails for R.

□

Exercise 8. ¹ Let R be a Noetherian local ring (i.e. it has a unique maximal ideal) with
maximal ideal m, and set k � R©m. Furthermore, �x a �nitely generated module M over
R.

(1) Show that if f �M � N is a morphism of �nitely generated modules, such that the
induced map M©mM � N©mN is surjective. Show that f is then surjective.

(2) A minimal free resolution of M is a resolution

� � �� Fn

dn
�� Fn�1 � � �� F0

of M such that for all n, Fn is free of �nite rank and im�dn� N mFn�1. Show that M
admits a minimal free resolution.

(3) Fix a minimal free resolution Fa of M . Then show that for all n ' 0, Ext
n�M,k� j 0

if and only if Fn j 0.
(4) Deduce the surprising fact that if Ext

n�1�M,k� j 0, then Ext
n�M,k� j 0.

(5) Show that a �nitely generated projective module over R is free.

Proof. (1) Since the induced map M©mM � N©mN is surjective, we automatically obtain
that N � f�M��m. In other words, m coker�f� � coker�f�, so by Nakayama's lemma,
coker�f� � 0 (i.e. f is surjective).

(2) We will construct this step by step. Let m1, . . . ,mn " M such that rm1, . . . ,mnx is a
basis of the R©m-vector space M©mM , and let f �F0 � R

n
� M be the map sending

ei to mi. Then this map is by de�nition surjective modulo m, so it is surjective by
the previous point. Furthermore, this map is in fact an isomorphism modulo m, so
ker�f� N mF0. Finally, this kernel is �nitely generated by Noetherianity of R.
Hence, we can keep this procedure going (replacing M by ker�f� and so on) and we

�nd our sought minimal resolution.
(3) Let r denote the rank of Fn. Note that for all j, Hom�dj, k� � 0. Indeed, given

g�Fj�1 � k � R©m, then g ` dj�1�Fj � k has its image included in mk � 0.
Thus, Ext

n�M,k� 	 Hom�Fn, k� 	 Hom�Rr
, k� 	 k

r
, so we are done.

(4) If Fn � 0, then by exactness, F
n�2
� F

n�1
is surjective. In particular, this implies

that mF
n�1

� F
n�1

, so F
n�1

� 0 by Nakayama's lemma.
(5) Let M be a �nitely generated projective module over R. Since M is projective, we

know in particular that Ext
i�M,k� � 0 for all i % 0. In particular, if Fa denotes a

minimal free resolution of M , then by the previous point, Fi � 0 for all i % 0. In other
words, F0 �M is an isomorphism, and hence M is free.

□


