EPFL - Fall 2024 Domenico Valloni
Rings and modules Exercises
Sheet 9 - Solutions

Exercise 1. Show the following:

(1) Prove that the only prime ideal of height zero in a domain is the ideal (0).
(2) Prove that a prime ideal of height 1 in a UFD is principal.

(3) Compute the prime ideals of height zero in R[z, y]/(xy)

[ Hint: Recall that there is a one-to-one correspondence between the prime ideals R
containing I and the prime ideals of R/[.]

Proof. (1) In any ring R, (0) € p for every prime ideal p, hence (0) is prime (and thus R
a domain) if and only if it is the only prime ideal of height zero.

(2) Let p be a prime ideal of height one. We will prove that p contains a prime element p.
If p contains a prime element p then (p) = p, since (p) € p and the only prime ideal
that is strictly contained in p is (0) by the previous point. Let f € p be non-zero (this
is possible since p # 0 because p has height one), let f = p{"+--p," be the unique (up
to multiplication by units) prime decomposition of f. Since p is prime, we must have
p; € p for some 7 € {1,...r}. We conclude that p = (p;).

(3) The prime ideals of height zero in R[z, y]/(xy) correspond to the primes p € R[z,y]

that contain 2y and that do not contain any other prime ideal p' such that zy € p'.
Suppose xy € p, then either 2 € p or y € p, hence either (z) € p or (y) € p. Now since
(x) and (y) both are prime ideals that contain zy we conclude that p = (z) or p = (y).

O

Exercise 2. Show the following:

(1) If R is a domain with dim R = 0, then R is a field.

(2) We say that a ring R is reduced if there are no nilpotent elements in R. That is, if
r € R is such that r" = 0 for some n, then r = 0. Give an example of a reduced ring
R of dimension zero which is not a field.

Proof. (1) A ring R is a domain if and only if the zero ideal is prime. A ring R is a field if
and only if the zero ideal is maximal. Therefore, a domain is a field if and only if it is
of dimension zero.

(2) Let F be a field and define a ring structure on R = F' X F' by coordinatewise multiplica-
tion. To compute the dimension of R we investigate its prime ideals. Let p be a prime
ideal. As (1,0)-(0,1) = (0,0) € p, we must have either (1,0) € p or (0,1) € p. Hence
either F' X {0} € p or {0} X F' € p. Suppose we are in the first case; the other case is
completely symmetric. If ' x {0} & p then there is an element (a,b) € p with b # 0,
but then (1,0), (a,b) is an F basis of F' X F and thus F' X F' = p, contradiction. Thus
we conclude p = F'x{0}. This is indeed a prime ideal, because if (a,b)-(c,d) € Fx{0}
then bd = 0 and thus either (a,b) € F x {0} or (c¢,d) € F x {0}. Together with the
case with flipped coordinates, we conclude that the prime ideals of F' X F' are precisely
F x {0} and {0} X F.. Hence, as neither contains the other, F' X F' has dimension 0. On
the other hand, suppose that (a,b)" = (a",b") = (0,0) for some (a,b) € F' x F' and
n=1. Then a" = 0 and b" = 0, since F is reduced this means that a = 0 and b = 0. So

F x I is reduced.
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Exercise 3. Solve the following exercises:
(1) Prove that every Artinian ring has dimension 0.
(2) Compute the dimension of the ring Z[x]/(47 ).

Proof. (1) By Exercise 1.2 of Sheet 1, every prime ideal in an Artinian ring is maximal.
Hence every prime ideal has height 0, and thus an Artinian ring has dimension 0.
(2) The ring Z[x]/(4’ ) is finite as a set (as a Z-module it is isomorphic to (Z/zlz)m)7
so in particular Artinian. Hence by the previous point, it has dimension 0.
(3) We will show that for any PID R, we have dim R[x] = 2. This will require some serious
work!
o Let m € R be a non-zero prime element (R is not a field). We then have an chain
of inclusions
0¢c(mw)<(mux)
and each ideal is prime. Indeed, the quotients are respectively R[x], R/(7)[z]
and R/(m) which are all domains. Thus, the height of (7, ) is at least 2, and
hence dim(R[z]) = 2.
o Let us start by studying prime ideals of height 1. We will show that if p is a
non-zero prime ideal of R[z], then p has height 1 if and only if it is principal.
Since R is a PID, it is in particular a UFD, so by Gauss’ lemma R[] is also a
UFD. Therefore by Exercise 1.2 any prime ideal of height 1 is principal. To see
the converse, let p = (p) be a principal prime ideal of R[xz], and let q € p be a
prime sub-ideal. We want to show that if q # 0, then q = p.
By the same argument as in Exercise 1.2 there would exist a non-zero prime
element ¢ € q. But then, p divides ¢, so they must be equal, i.e. q = p.
O

Exercise 4. Let R be a PID which is not a field. The goal of this exercise is to show that
dim R[z] = 2 (in particular dim k[z,y] = 2).
o Show that dim R[z] = 2.
o Let p be a non-zero prime ideal of R[x]. Show that p has height 1 if and only if it is
principal.
o Let K = Frac(R). For any prime ideal p in R[z], define p° to be the ideal of K[z]
generated by the elements of p. Show that if p is a prime ideal of height 2, then
p° = K[x]. Conclude that there exists 7 € R irreducible such that 7 € p.
[ Hint: Recall the notion of primitive polynomial, and the statements around Gauss
lemma (see for example proposition 3.8.13 in the "Anneauz et corps” notes).]
o Conclude that any prime ideal of height 2 is maximal, and deduce that dim(R[z]) = 2.

K

[ Remark: Tt is a general fact that given a Noetherian commutative ring R of finite Krull
dimension, dim(R[x]) = dim(R)+1. This is not so complicated once we have proven Krull’s
Hauptidealsatz, but we unfortunately do not have the time to cover this in the course. See
any book in commutative algebra if you want to know more about this. ]

Proof. o Let m € R be a non-zero prime element (R is not a field). We then have an
chain of inclusions
0¢S(n)c(mux)
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and each ideal is prime. Indeed, the quotients are respectively R[z], R/(7w)[z] and
R/(7) which are all domains. Thus, the height of (7, z) is at least 2, and hence
dim(R[z]) = 2.

o Since R is a PID, it is in particular a UFD, so by Gauss’ lemma R[z] is also a UFD.
Therefore by Exercise 2.2 any prime ideal of height 1 is principal. To see the converse,
let p = (p) be a principal prime ideal of R[x], and let q € p be a prime sub-ideal. We
want to show that if ¢ # 0, q = p.

If it was not the case, by the same argument as in Exercise 2.2 there would exist a
non-zero prime element ¢ € q. But then, p divides ¢, so they must be equal, i.e. g = p.

o Let q € p be a prime sub-ideal of height 1, and write q = (¢) for ¢ a prime element. If

q € R, then p° contains ¢, which is invertible in K[z]! Therefore p® = K[z].

Now let us deal with the case ¢ € R. Then ¢ is a primitive polynomial, and hence
by Gauss’ lemma it gives an irreducible polynomial in K[x]. Therefore (¢) = q° is a
maximal ideal in K[z]. Since q° € p°, we are left to show that q° # p°. If it was the
case, then for any a € p, a € q° = (¢), so we can write

_ 4
a=y

with » € R. Thus gives ra = ¢, and since ¢ is primitive, » must be a unit. Therefore
this would imply p = g, but this is impossible since p has height 2.

In both cases, we have proven that p° = K[x], so 1 € p°. Write
a;
L= Z b_l-pi

with a;,b; € R and p; € p. Multiplying by the product of the b,’s gives that pn R # 0.
Writing this elements as a product of prime elements (which must all be in R!), we
conclude that p must contain a prime element in R.

o Let m € RNp be a prime element, and let p denote the image of p through the quotient
R[z] = R[z]/(w) = R/(m)[x]. Since p is not principal (its height is not 1), p is a
non-zero prime ideal of R/(7)[x]. However R is a PID, so R/(w) is a field, whence
R/(m)[z] is a PID. This means that p is necessarily a maximal ideal, so by the corre-
spondence theorem p is maximal too.

To recapitulate, we have shown that any prime of height 2 is maximal, so there
cannot be any prime of height > 2, which gives us dim(R[z]) < 2. Thus we win thanks
to the first point.

O

Exercise 5 (Nakayama’s Lemma). Let R be a ring and let M be a finitely generated
R-module. Show the following:

(1) Let I be an ideal of R such that IM = M. Then there exists x € 1 + I such that
xM = 0.
[ Hint: The proof is similar to the direction (3) = (1) in Proposition 6.2.3 of the
lecture notes. ]

(2) Suppose now that the ring R is local, i.e., that there is a unique maximal ideal m of
R. Show that if mM = M, then M = 0.



(3) For aring R denote by Jac(R) the intersection of all maximal ideals of R; this is called
the Jacobson radical of R (note also that nil(R) € Jac(R)). Show that if there is an

ideal I C Jac(R) such that IM = M, then this implies that M = 0. This generalizes
the previous point to any ring.

[ Hint: Prove that in (2), (3) the element x, whose existence is assured by (1), is in fact
invertible. ]

Remark 0.1. Nakayama’s lemma is a EXTREMELY powerful tool in commutative algebra
and algebraic geometry, so keep it mind this exists. You should really (really) remember it!

To give a hint of its tremendous power, recall you had an exercise about showing that
if R is a commutative ring, M a finitely generated module and f: M — M a surjective
endomorphism, then f is an isomorphism. Actually, the statement follows immediately by
considering M as an R[x]-module via z - m = f(m), and taking I = (x) in (1).

Recall that when you proved it in an early exercise sheet, you had a Noetherian assumption
on R (and it was fundamental to the proof, have fun trying to prove it directly without this
assumption!). With this argument, you don’t need it!

Proof. (1) Let my,...,m, be generators of M. As IM = M, we can express every m € M
as an /-linear combination of m,, ..., m,,. In particular, there is a matrix A with entries
in I such that Am = m, where m € M®" is the column vector with i entry m,.
Therefore (Id, —A)m = 0. Multiplying by the adjugate of the matrix A — Id,, implies
that if z := det(Id,, —A) then xm; = 0 for all i. Hence M = 0, since the m,’s generate
M. Tf we can prove that x € 1 + I then we are done. By expanding the determinant,
we have

T = Z sgn(o) 1_[(61',0(1') = Qi g(i))-
i=1

oES,

The only term in this sum which isn’t in [ is the one corresponding to o = id, which
is [T, (1 —a;;). Thisisin 141, s0 € 1 + I and we are done.

(2) By the previous point, there is x € 1 + m such that M = 0. But then = ¢ m since
1 ¢ m. Suppose that x is not a unit. Then x is contained in some proper maximal ideal
by Zorn’s lemma, but this is a contradiction since x ¢ m and m is the only maximal
ideal of R.

(3) Again by (1), there is z € 1 + I such that M = 0. Suppose that x is not a unit, then
there is a maximal ideal m containing x. But then also z € 1 + m as [ € Jac(R), and
thus 1 € m, which is absurd.

O

Exercise 6. Let R be a commutative ring which is an integral domain but not a field, and
let F' be the fraction field of R. Show that F' is not finitely generated as an R-module.

Proof. Suppose on the contrary that F' is a finitely generated R-module, and let y € R be
a non-invertible element. Since yF = F, we know by Nakayama’s lemma (the version as in
Exercise 4.1) that there exists x € 1 + yR such that xM = 0. Writing x = 1 + yr, we obtain
that

O=(1+yr)-1=1+yr,

so yr = —1. Hence, y is invertible, contradicting our assumption. O
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Exercise 7. Let R = F,[[t]] be the ring of power-series in the variable ¢ over the finite
field with ¢ elements IF,.

Recall that as a set, R is the set of formal power-series f = ano a,t" with coefficients a,, €
F,. For two such power series, ) . a,t" and ) ., b,t", one defines the addition to be the
power-series Y . (a,+b,)t" and multiplication to be the power-series Y . (Y ,_, axb,—s)t".
Recall (or do) the two following exercises from "Anneaux et corps":

(1) If f € R\ (t), then f is invertible (and hence R is a local ring with maximal ideal (¢)).

(2) A formal Laurent series over the field F, is defined in a similar way to a formal power
series, except that we also allow finitely many terms of negative degree. That is, series
of the form f =) . a,t" where for some N € Z. Define a natural ring structure on
this set and show that with this ring structure the ring of formal Laurent series over
[F,, usually denoted F,((¢)), is equal to the fraction field of R.

Now let us go to the actual exercise:

(3) Show that trdegg (Frac(R)) is infinite.
[Hint: show that F (t;,...,t,) is countable, and R is not. ]

(4) Show that dim R = 1 and hence show that Theorem 6.1.12 in the course notes does
not work with non-finitely-generated algebras.

Proof. (1) Let f = ag+ Y. ., ant" where ag # 0 define f~" = Y b,t" where (b,) is defined
recursively by by = i and b, = —i > aib,_; forn = 1.

(2) Multiplication of such series can be defined similarly to the definition for formal power
series, the coefficient of t" of two series with respective sequences of coefficients {a,,}
and {b,} is defined to be: ) .., a;b,—;, this sum has only finitely many non-zero terms,
since both b,_; and a; are zero in negative enough degrees. Again ) (> .., a;b,_i)t"
is a Laurent series since if n is negative enough, then either a; or b,_; is zero for all
i. Note that every non-zero element of F ((¢)) can be written as the product of some
power of ¢t and an element of f € R\ (¢); simply factor out the lowest power of ¢ with
non-zero coefficient. The former is clearly invertible, and the latter is invertible by the
previous point. Hence F,((t)) is a field containing R. On the other hand, the above
argument shows that every element of F,((¢)) can be written as a fraction of elements
in R, and thus F,((¢)) = Frac(R).

(3) We first note that it is sufficient to prove the hint. We have that R C Frac(R) hence
if R is not countable neither is Frac(R). Suppose that Frac(R) has finite transcen-
dence degree over F,, then there exists ¢;,...t, such that Frac(R) is algebraic over
F,(t1,....t.). EF,(t1,....t,.) is countable then so is the set of polynomials with coef-
ficients in F(¢1,...,t,.), and so in particular every algebraic extension of F,(¢1,...,t,)
is countable. Hence also Frac(R) is countable, which contradicts the hint.

So it is sufficient to show the hint. We first show that F,(¢1,...,t,) is countable. It
is clear that F,[t,...,¢,.] is countable, because it is a countable union of polynomi-
als of bounded degree. Thus F,(¢y,...,t,) is countable as it is the fraction field of
bF,[t1,...,t.]. Lastly, we show that R is not countable. To see this, it suffices to note

that the set of sequences {0, 1}N naturally injects into R, and the set of such sequences
is uncountable by Cantor’s diagonal argument.

(4) For f =) ., a,t" € R\ {0} define deg f := inf{n 2 0 | a, # 0}. If I is an ideal of R,
then by point (1) we have f € I\ {0} if and only if **’ € I. Hence a non-zero ideal



I # 0 of R is generated by ¢* where d = inf{deg f | f € I\ {0}}. Therefore, the only
prime ideals of R are (0) C (t), and thus R has dimension 1. By the previous point,
Theorem 6.1.12 hence fails for R.

[

Exercise 8. # Let R be a Noetherian local ring (i.e. it has a unique maximal ideal) with
maximal ideal m, and set k = R/m. Furthermore, fix a finitely generated module M over
R.

(1) Show that if f: M — N is a morphism of finitely generated modules, such that the
induced map M /mM — N /mN is surjective. Show that f is then surjective.
(2) A minimal free resolution of M is a resolution

dn
i B S F > Fy

of M such that for all n, F, is free of finite rank and im(d,,) € mF,_,. Show that M
admits a minimal free resolution.

(3) Fix a minimal free resolution F, of M. Then show that for all n > 0, Ext"(M, k) # 0
if and only if F,, # 0.

(4) Deduce the surprising fact that if Ext"* (M, k) # 0, then Ext"(M, k) # 0.

(5) Show that a finitely generated projective module over R is free.

Proof. (1) Since the induced map M /mM — N/mN is surjective, we automatically obtain
that N = f(M)+m. In other words, m coker(f) = coker(f), so by Nakayama’s lemma,
coker(f) =0 (i.e. f is surjective).

(2) We will construct this step by step. Let my,...,m, € M such that {my,...,m,} is a
basis of the R/m-vector space M /mM, and let f: F, = R" — M be the map sending
e; to m;. Then this map is by definition surjective modulo m, so it is surjective by
the previous point. Furthermore, this map is in fact an isomorphism modulo m, so
ker(f) € mF,. Finally, this kernel is finitely generated by Noetherianity of R.
Hence, we can keep this procedure going (replacing M by ker(f) and so on) and we
find our sought minimal resolution.
(3) Let r denote the rank of F,. Note that for all j, Hom(d;, k) = 0. Indeed, given
g:Fj_1 = k = R/m, then g o d;_;: F; = k has its image included in mk = 0.
Thus, Ext"(M, k) = Hom(F,, k) = Hom(R", k) = k", so we are done.
(4) If F,, = 0, then by exactness, F™? o g surjective. In particular, this implies
that mF™"' = F**' so F™' = 0 by Nakayama’s lemma.
(5) Let M be a finitely generated projective module over R. Since M is projective, we
know in particular that Ext'(M,%k) = 0 for all i > 0. In particular, if F, denotes a
minimal free resolution of M, then by the previous point, F; = 0 for all z > 0. In other

words, Fy = M is an isomorphism, and hence M is free.
O



