
EPFL - Fall 2024 Domenico Valloni

Rings and modules Exercises

Sheet 8 - Solutions

Exercise 1. LetR be a ring and letM,K,L andN beR-modules. Assume that Ext
i
R�M,N�,

Ext
i
R�K,N� and Ext

i
R�L,N� have �nite length for all i ' 0, and that there exist integers s

such that they are all zero for all i % s. Show that if

0 // K // M // L // 0

is a short exact sequence, then
s

=
i�0

��1�i lengthExtiR�M,N� �
s

=
i�0

��1�i lengthExtiR�K,N� �
s

=
i�0

��1�i lengthExtiR�L,N�

Proof. There is an induced long exact sequence on Ext
i
's, since this sequence eventually

terminates with all terms equal to zero this follows directly from Exercise 6.1 on Sheet 4.
Note: Exercise 6.1 on Sheet 4 was stated for �nitely generated modules Mi over an Artinian
and Noetherian ring, however we only used that the Mi's where of �nite length in the
solution. □

Exercise 2 (Nullstellensatz for SpecR). Let R be a commutative ring. Given a closed
subset Z N SpecR, de�ne I�Z� �� rf " R, Z N V �f�x. Show that I�Z� is an ideal, and
that for all ideals I N SpecR,

I�V �I�� � Ó
I

In particular, show that for all ideals I, J of R,

V �I� � V �J� ¿ Ó
I �

Ó
J

Proof. Throughout, the letter p always denotes a prime ideal.
We will show that I�Z� is an ideal by showing that if Z � V �I�, then I�Z� � Ó

I, which
we know to be an ideal.
Therefore, let us �rst prove that I�V �I�� N

Ó
I, so let f " I�V �I��. By de�nition,

V �I� N V �f�, hence by de�nition

f "�
pOI

p �
Ó
I

where the equality is Proposition 6.4.5 in the notes.
On the other hand, if f "

Ó
I, then f

n
" I for some n. Hence, V �I� N V �fn�, so to

conclude that f " I�V �I��, we are left to show that V �f� � V �fn�. Since �fn� N �f�,
V �f� N V �fn�. Conversely, if p # f

n
, then also p # f since p is prime, so V �fn� N V �f�

and we are done.

In the second statement, the "left to right" implication is immediate with what we just did,
and the "right to left" follows from the general fact that for any ideal I, V �I� � V �ÓI�.
This is a restatement that for all primes p,

p O I ¿ p O
Ó
I

□
1



2

Exercise 3. Let R be a commutative ring and I N R be a radical ideal. Show that I is
prime if and only if V �I� is an irreducible topological space.

Proof. We will use exercise 2 of this sheet and exercise 3 of sheet 7 without further mention.
Suppose �rst that I is prime, and assume that V �I� � V �J� < V �K� with J , K radical.

Then

I �
Ó
I � I�V �I�� � I�V �J� < V �K�� � I�V �J =K�� � Ó

J =K � J =K

(the intersection of two radical ideals is radical). If by contradiction V �J� j V �I� (or in
other words I à J) and V �J� j V �I� (i.e. I à K), then there exist a " J ¯ I, b " K ¯ I.
However, ab " J =K � I, which contradicts the fact that I is prime.
Conversely, assume V �I� is an irreducible topological space, and assume by contradiction

that I is not prime. Then there exist a, b � I such that ab " I. But then, V �I� ©N V �a�,
V �I� ©N V �b� and V �I� N V �ab� � V �a� = V �b�. But then, setting Z1 � V �a� = V �I� and
Z2 � V �b� = V �I� gives V �I� � Z1 < Z2, with none of the Zi being V �I�. This contradicts
that V �I� is irreducible. □

Exercise 4. Let R � C�x, y, z� and I � �xy � z
2
, x

2
� y

2� N R. Identify V �I� L C3
. Notice

that this naturally breaks into smaller algebraic sets. What are the ideals of each piece?

Proof. A point �p, q, r� " C3
is in V �I� if and only if pq�r2 � 0 and p

2
�q

2
� �p�q��p�q� � 0.

So either p � q or p � �q. In the �rst case, the �rst equation becomes 0 � p
2
� r

2
�

�p� r��p� r� and so either p � r or p � �r. In the second case, the �rst equation becomes
0 � �p

2
� r

2
� �p � ir��p � ir� and so r � ip or r � �ip. Therefore

V �I� � r�p, p, p� � p " CxÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
��V1

< r�p, p,�p� � p " CxÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
��V2

< r�p,�p, ip� � p " CxÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
��V3

< r�p,�p,�ip� � p " CxÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
V4

The ideals of these four pieces are p1 �� �x�y, x�z�, p2 �� �x�y, x�z�, p3 �� �x�y, x�iz�
and p4 �� �x� y, x� iz� respectively. Notice that they are all prime (because up to a linear
change of variables they are all just �x, y�), and thus Vi is irreducible for all i. Hence V �I�
doesn't split up further. □

Exercise 5. Let F be an algebraically closed �eld. Let X and Y be algebraic sets in F
n
.

(1) Prove that I�X < Y � � I�X� = I�Y �
(2) By considering X � V �x2

�y� and Y � V �y� for the ideals �x2
�y� and �y� in F �x, y�,

show that it need not be true that I�X = Y � � I�X� � I�Y �.
(3) Prove that in general

Ô
I�X� � I�Y � � I�X = Y �.

Proof. (1) Suppose f " I�X < Y �. Then f�P � � 0 for all P " X and all p " Y . So
f " I�X� and f " I�Y �. Conversely, suppose f " I�X� = I�Y �. Then f�P � � 0 for
all P " X and all P " Y . Therefore f " I�X < Y �.

(2) I�X� � �x2
�y�, I�Y � � �y� and I�X=Y � � I�r�0, 0�x� � �x, y�. But I�X�� I�Y � �

�x2
, y�.

(3) This follows from a question on the previous exercise sheet and the Nulstellensatz. Let
I � I�X� and J � I�Y �, so V �I� � X and V �J� � Y . By Exercise 2 on Exercise sheet
7 we have I�X =Y � � I�V �I �J��. But by the Nulstellensatz, I�V �I �J�� � Ó

I � J .
□
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Review exercises for material from �Anneaux et corps�

Exercise 6. Show that x
3
� y

7
" k�x, y� is irreducible.

�Hint: Use the consequence of Gauss's theorem saying that for a unique factorisa-
tion domain R and a primitive polynomial f " R�t�, we have that f is irreducible
in Frac�R��t� if and only if it is irreducible in R�t�.�

Proof. We use the hint for R � k�y�. It is therefore su�cient to check that x
3
� y

7
is

irreducible in k�y��x�. Suppose it is not, since the degree is three it has to have a linear
term in any factorisation and hence there exists f, g coprime such that f

g
is a root of x

3
�y

7
.

We write: f
3

g3
� y

7
� 0, and hence f

3
� �g

3
y
7
. It then follows that y

3
divides f but then

also that y divides g, which contradicts coprimality.
□

Review exercises for material from �Anneaux et corps�

Exercise 7. Let R � k�x, y, z�. Show that �xz3�yz
3
�y

2
z
2
�xyz�xy� is a prime

ideal of R.
�Hint : Use Eisenstein's Criterion.�

Proof. View f � xz
3
� yz

3
� y

2
z
2
� xyz � xy as an element of k�x, y��z�, so f � �x� y�z3�

y
2
z
2
� xyz � xy. This satis�es the hypotheses of Eisenstein's criterion for p � y, and so f

is irreducible in R. Thus �f� is a prime ideal.
□

Review exercises for material from �Anneaux et corps�

Exercise 8. Solve the following exercises:

(1) Consider the polynomial f � X
3
Y �X

2
Y

2
�Y

3
�Y

2
�X�Y �1 in C�X, Y �.

Write it as an element of �C�X���Y �, that is collect together terms according
to powers of Y , and then use Eisenstein's criterion to show that f is prime
in C�X, Y �.

(2) Let F be any �eld. Show that the polynomial f � X
2
� Y

2
� 1 is irreducible

in F �X, Y �, unless F has characteristic 2. What happens in that case?

Proof. (1) p � X � 1 is prime in C�X� and satis�es the conditions of Eisenstein's criterion
for f .

(2) Eisenstein's criterion gives that X
2
� Y

2
� 1 is irreducible if Y � 1 j Y � 1, i.e. it is

irreducible if 1 j �1, i.e. unless the characteristic is 2. In characteristic 2 we have
X

2
� Y

2
� 1 � �X � Y � 1�2 and hence this polynomial is not irreducible.

□
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Exercise 9. Show the following:

(1) Let F N L be a �eld extension, and suppose a1, . . . , an are elements of L which are
algebraically independent over F . Prove that F �a1, . . . , an� is isomorphic to the fraction
�eld of the polynomial ring F �x1, . . . , xn�.

(2) Let F N L be a �eld extension. Show that a subset of L is a transcendence basis for L
over F if and only if it is a maximal algebraically independent set. As a consequence
show that a transcendence basis exists for any �eld extension F N L.

Proof. (1) De�ne a ring homomorphism ϕ � F �x1, ..., xn� � L by xi ( ai and ϕ¶F � idF .
We claim this is injective. For suppose ϕ�f� � 0 for some f . This gives a polynomial
with coe�cients in F satis�ed by the ai, and so by de�nition of algebraic independence,
f � 0. This injectivity, along with the existence of inverses in L, means we can extend
ϕ to an injective homomorphism F �x1, . . . , xn� 0 L. Lastly, the image is a �eld (as
F �x1, . . . , xn� is) containing F and a1, . . . , an, and thus contains F �a1, . . . , an�. But
as every element of the image is a rational function of the a1, . . . , an with coe�cients
in F , we conclude that the image is precisely F �a1, . . . , an�. Hence F �a1, . . . , an� is
isomorphic to F �x1, . . . , xn�.

(2) Suppose the set raixi"I is a transcendence basis for L O F , with some (perhaps in�nite)
indexing set I. It is algebraically independent by de�nition, so we need to show it is
maximal subject to this. Suppose not, so there is some element a of L which such
that rax< raixi"I is algebraically independet. But by de�nition of transcendent basis,
L O F �raixi"I� is algebraic, so there is a non-zero polynomial p " F �raixi"I��X� such
that p�a� � 0. The coe�cients of p are rational functions of the ai's, so by multiplying
through to clear denominators, we can view p as a non-zero multivariate polynomial
with coe�cients in F satis�ed by some subset of raixi"I and a. This contradicts the
choice of a.
Conversely, suppose raixi"I is a maximal algebraically independent set. We need to

show that L O F �raixi"I� is algebraic. Let a " L be arbitrary. As raixi"I < rax is
not algebraically independent there is some multivariate non-zero polynomial f with
coe�cients in F such that f�a, ai1 , . . . , ain� � 0 for some i1, . . . , in " I. This must
have some non-zero a term as otherwise it gives an algebraic dependence among the
ai's. This gives a polynomial satis�ed by a with coe�cients in F �raixi"I� by dividing
through by the coe�cient of the highest power of a, and thus L O F �raixi"I� is alge-
braic.

To show that a transcendence basis exists, we use Zorn's lemma on the partially
ordered set Σ of algebraically independent sets over F inside L. If Σ is empty then
L O F is algebraic and there is nothing to prove. Hence assume that Σ is non-empty.
To apply Zorn's Lemma, we must show that any chain of algebraically independent sets
has an upper bound in Σ. Suppose �Aα�α"Ω is such a chain, i.e. for all indexes α, β " Ω,
either Aα N Aβ or Aα O Aβ holds. Then �α"ΩAα de�nes an algebraically independent
set, since any polynomial relation in �α"Ω Aα is a polynomial relation in Aα for Aα

su�ciently large. Therefore �α"ΩAα is an uppe rbound for the chain �Aα�α"Ω. By
Zorn's Lemma there exists a maximal algebraically independent set of elements in
L. By what has already been proven such a a maximal algebraically independent set
consitutes a transcendence basis for L over F .

□
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Exercise 10. Prove that if F N K N L are �eld extensions such that trdegF L $ �, then
trdegF L � trdegF K � trdegK L

Proof. By previous exercises trdegF L is the cardinality of any maximal algebraically F -
independent subset rα1, . . . , αtrdegF Lx N L. Let B � rβ1, . . . , βtrdegF Kx N K be a maximal
algebraically F -independent subset of K and let C � rγ1, . . . , γtrdegK Lx N L be a maximal
algebraically K-independent subset of L. By construction,

B < C � rβ1, . . . , βtrdegF K , γ1, . . . , γtrdegK Lx N L

is an algebraically F -independent subset of L. To conclude, we have to show that F �B<C� N
L is an algebraic extension. By elementary �eld theory, algebraicity is transitive, and so it
it su�cient to show that both F �B < C� N K�C� and K�C� N L are algebraic. The latter
is true by de�nition, so it remains to show that F �B < C� N K�C� is algebraic. But now
notice that K�C� � �F �B<C���K� (i.e. the �eld obtained by adjoining the elements of K
to F �B <C�). So it is enough to show that every element of K is algebraic over F �B <C�,
as then every rational function of the elements of C with coe�cients in C is algebraic too.
This is now automatic, since F �B� N K is algebraic. Hence F �B<C� N K�C� is algebraic,
and thus also F �B < C� N L. So B < C is a transcendence basis of L over F , which proves
trdegF L � trdegF K � trdegK L. □


