EPFL - Fall 2024 Domenico Valloni
Rings and modules Exercises
Sheet 8 - Solutions

Exercise 1. Let R be aringand let M, K, L and N be R-modules. Assume that Extzé(M, N),
ExtR(K,N) and ExtR(L, N) have finite length for all 7 = 0, and that there exist integers s
such that they are all zero for all ¢+ > s. Show that if

0 K M L 0

is a short exact sequence, then

> (~1)'length Extyz(M, N) = > (=1)"length Extp(K, N) + Y (-1)'length Exty(L, N)

=0 1=0 =0

Proof. There is an induced long exact sequence on Ext'’s, since this sequence eventually
terminates with all terms equal to zero this follows directly from Exercise 6.1 on Sheet 4.

Note: Exercise 6.1 on Sheet 4 was stated for finitely generated modules M; over an Artinian
and Noetherian ring, however we only used that the M;’s where of finite length in the
solution. 0

Exercise 2 (Nullstellensatz for Spec R). Let R be a commutative ring. Given a closed
subset Z € Spec R, define I(Z) := {f € R, Z € V(f)}. Show that I(Z) is an ideal, and
that for all ideals I € Spec R,

L(V(1)) = VI
In particular, show that for all ideals I, J of R,

V() =V(J) &= JVI=VJ

Proof. Throughout, the letter p always denotes a prime ideal.

We will show that 7(Z) is an ideal by showing that if Z = V(I), then I(Z) = VI, which
we know to be an ideal.

Therefore, let us first prove that I(V(I)) € VI, so let f € I(V(I)). By definition,

V(I) € V(f), hence by definition
fe(\p=vI

p2I

where the equality is Proposition 6.4.5 in the notes.
On the other hand, if f € VI, then f" € I for some n. Hence, V(I) € V(f"), so to
conclude that f € I(V(I)), we are left to show that V(f) = V(f"). Since (f") € (f),
V(f) € V(f"). Conversely, if p 2 f", then also p 3 f since p is prime, so V(f") € V(f)

and we are done.

In the second statement, the "left to right" implication is immediate with what we just did,
and the "right to left" follows from the general fact that for any ideal I, V/(I) = V(VI).
This is a restatement that for all primes p,
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Exercise 3. Let R be a commutative ring and I € R be a radical ideal. Show that I is
prime if and only if V() is an irreducible topological space.

Proof. We will use exercise 2 of this sheet and exercise 3 of sheet 7 without further mention.
Suppose first that I is prime, and assume that V() = V(J) U V(K) with J, K radical.
Then

[=VI=I(V)=I(V(NUV(E)=I(V(JnK)=VInK=JnK

(the intersection of two radical ideals is radical). If by contradiction V(J) # V(I) (or in
other words I & J) and V(J) # V(I) (i.e. I € K), then there exist a € J\ I, b€ K \ I.
However, ab € J n K = I, which contradicts the fact that I is prime.

Conversely, assume V(1) is an irreducible topological space, and assume by contradiction
that I is not prime. Then there exist a, b ¢ I such that ab € I. But then, V(I) ¢ V(a),
V(I) ¢ V(b) and V(I) € V(ab) = V(a) n V(b). But then, setting Z;, = V(a) n V(I) and
Zy =V(b) NV (I) gives V(I) = Z; U Z,, with none of the Z; being V' (I). This contradicts
that V(1) is irreducible. O

Exercise 4. Let R = C[z,y, 2] and I = (zy —2°,2° —y°) € R. Identify V(I) c C°. Notice
that this naturally breaks into smaller algebraic sets. What are the ideals of each piece?

Proof. A point (p,¢,7) € C*isin V(1) if and only if pg—r® = 0 and p°—¢° = (p—q)(p+¢q) = 0.
So either p = ¢ or p = —¢. In the first case, the first equation becomes 0 = p2 -r =
(p=7r)(p+r) and so either p = r or p = —r. In the second case, the first equation becomes
2" 2 : ; 4 .
0==p —=r"=(p—ir)(p+ir)and sor =iporr=—ip. Therefore
V(1) ={(p,p,p) :p € CLU{(p,p,—p) : p € CYU{(p,—p,ip) : p € C} U {(p, —p, —ip) : p € C}
:='V'1 :="‘/2 :=“/3 ‘;4

The ideals of these four pieces are p, := (z—y,x—2), ps := (x—y, x+2), p3 := (x+y, x+i2)
and py := (z +y,x —iz) respectively. Notice that they are all prime (because up to a linear
change of variables they are all just (z,y)), and thus V; is irreducible for all i. Hence V(1)
doesn’t split up further. 0

Exercise 5. Let F be an algebraically closed field. Let X and Y be algebraic sets in F".
(1) Prove that I(X uY)=1(X)nI(Y)
(2) By considering X = V(2°—y) and Y = V(y) for the ideals (z° —y) and (y) in F[z, y],
show that it need not be true that (X nY) = I(X) + I(Y).
(3) Prove that in general \/I(X)+ I(Y) =1(X NnY).

Proof. (1) Suppose f € I(X UY). Then f(P) =0 forall P € X and all p € Y. So
f €I(X) and f € I(Y). Conversely, suppose f € I[(X) N I(Y). Then f(P) =0 for
all P € X and all P € Y. Therefore f € (X UY).

(2) 1(X) = (2" =y), [(Y) = (y) and [(X nY) = 1({(0,0)}) = (z,y). But I(X)+I(Y) =
(7, ).

(3) This follows from a question on the previous exercise sheet and the Nulstellensatz. Let
I=1I(X)and J=1(Y),s0o V(I) = X and V(J) =Y. By Exercise 2 on Exercise sheet

7 we have (X NnY) = I(V(I+J)). But by the Nulstellensatz, I[(V(I+J)) = VI + J.
0



Review exercises for material from “Anneaux et corps”

Exercise 6. Show that 2° + ¢ € k[z, y] is irreducible.

[ Hint: Use the consequence of Gauss’s theorem saying that for a unique factorisa-
tion domain R and a primitive polynomial f € R[t], we have that f is irreducible
in Frac(R)[¢] if and only if it is irreducible in R[¢].]

Proof. We use the hint for R = k[y]. It is therefore sufficient to check that z° + y* is
irreducible in k(y)[z]. Suppose it is not, since the degree is three it has to have a linear
term in any factorisation and hence there exists f, g coprime such that 5 is a root of 2° + y7.

3 . .
We write: ;—3 + y7 = 0, and hence f3 = —g3y7. It then follows that y3 divides f but then

also that y divides g, which contradicts coprimality.
O

Review exercises for material from “Anneaux et corps”

Exercise 7. Let R = k[z,y, z]. Show that (zz° +y2° —y’2° + zyz — zy) is a prime
ideal of R.
[ Hint: Use Eisenstein’s Criterion. ]

Proof. View f = x2° 4+ y2° — y*2* + 2yz — zy as an element of k[z,y][2], so f = (z +y)z° —
y2z2 + xyz — xy. This satisfies the hypotheses of Eisenstein’s criterion for p = y, and so f

is irreducible in R. Thus (f) is a prime ideal.
0

Review exercises for material from “Anneaux et corps”

Exercise 8. Solve the following exercises:

(1) Consider the polynomial f = X’Y + X*Y*+Y? Y’ =X -Y +1in C[X,Y].
Write it as an element of (C[ X ])[Y], that is collect together terms according
to powers of Y, and then use Eisenstein’s criterion to show that f is prime
in C[X,Y].

(2) Let F be any field. Show that the polynomial f = X* 4 Y” =1 is irreducible
in F[X,Y ], unless F has characteristic 2. What happens in that case?

Proof. (1) p= X —1is prime in C[ X ] and satisfies the conditions of Eisenstein’s criterion
for f.

(2) Eisenstein’s criterion gives that X + Y* — 1 is irreducible if Y =1 # Y + 1, i.e. it is
irreducible if 1 # —1, i.e. unless the characteristic is 2. In characteristic 2 we have
X’+Y?=1=(X+Y +1)* and hence this polynomial is not irreducible.

O



4

Exercise 9. Show the following:

(1)

(2)

Let F' € L be a field extension, and suppose ai,...,a, are elements of L which are
algebraically independent over F. Prove that F'(a,,...,a,) is isomorphic to the fraction
field of the polynomial ring F[x;,...,z,].

Let F' € L be a field extension. Show that a subset of L is a transcendence basis for L
over F'if and only if it is a maximal algebraically independent set. As a consequence
show that a transcendence basis exists for any field extension F' € L.

Proof. (1) Define a ring homomorphism ¢ : F[xy,...,x,] = L by x; » a; and ¢|r = idp.

We claim this is injective. For suppose ¢(f) = 0 for some f. This gives a polynomial
with coefficients in F' satisfied by the a;, and so by definition of algebraic independence,
f = 0. This injectivity, along with the existence of inverses in L, means we can extend
¢ to an injective homomorphism F(xy,...,x,) < L. Lastly, the image is a field (as
F(xy,...,z,) is) containing F' and ay,...,a,, and thus contains F(ay,...,a,). But
as every element of the image is a rational function of the aq,...,a, with coefficients
in F', we conclude that the image is precisely F(ay,...,a,). Hence F(ay,...,a,) is
isomorphic to F(zy,...,x,).

Suppose the set {a;};e; is a transcendence basis for L 2 F, with some (perhaps infinite)
indexing set I. It is algebraically independent by definition, so we need to show it is
maximal subject to this. Suppose not, so there is some element a of L which such
that {a} U {a;};es is algebraically independet. But by definition of transcendent basis,
L 2 F({a;};cr) is algebraic, so there is a non-zero polynomial p € F({a;}ic;)[X] such
that p(a) = 0. The coefficients of p are rational functions of the a;’s, so by multiplying
through to clear denominators, we can view p as a non-zero multivariate polynomial
with coefficients in F' satisfied by some subset of {a;};e; and a. This contradicts the
choice of a.

Conversely, suppose {a;};e; is a maximal algebraically independent set. We need to
show that L 2 F({a;}ies) is algebraic. Let a € L be arbitrary. As {a;};er U {a} is
not algebraically independent there is some multivariate non-zero polynomial f with
coefficients in F' such that f(a,a;,...,a; ) = 0 for some 4y,...,4, € I. This must
have some non-zero a term as otherwise it gives an algebraic dependence among the
a;’s. This gives a polynomial satisfied by a with coefficients in F({a;};c;) by dividing
through by the coefficient of the highest power of a, and thus L 2 F({a;};c;) is alge-
braic.

To show that a transcendence basis exists, we use Zorn’s lemma on the partially
ordered set ¥ of algebraically independent sets over F inside L. If ¥ is empty then
L 2 F is algebraic and there is nothing to prove. Hence assume that 3 is non-empty.
To apply Zorn’s Lemma, we must show that any chain of algebraically independent sets
has an upper bound in X. Suppose (A, )q.eq is such a chain, i.e. for all indexes o, 3 € Q,
either A, € Az or A, 2 Ag holds. Then |J,_cq A, defines an algebraically independent
set, since any polynomial relation in |J .o As is a polynomial relation in A4, for A,
sufficiently large. Therefore |J, .o A, is an uppe rbound for the chain (A4,).eq- By
Zorn’s Lemma there exists a maximal algebraically independent set of elements in
L. By what has already been proven such a a maximal algebraically independent set

consitutes a transcendence basis for L over F'.
O
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Exercise 10. Prove that if F' € K € L are field extensions such that trdeg, L < 0o, then
trdegp L = trdegp K + trdeg, L

Proof. By previous exercises trdegyp L is the cardinality of any maximal algebraically F-
independent subset {ay, ..., 0qeg, 1} € L. Let B = {f,..., Budeg, k} € K be a maximal
algebraically F-independent subset of K and let C' = {7,..., Virdeg,, £} € L be a maximal
algebraically K-independent subset of L. By construction,

BuC= {ﬁlv"'aﬁtrdegpl(?fylu-"77trdegKL} cL

is an algebraically F-independent subset of L. To conclude, we have to show that F(BUC') <
L is an algebraic extension. By elementary field theory, algebraicity is transitive, and so it
it sufficient to show that both F(BuU () € K(C) and K(C) € L are algebraic. The latter
is true by definition, so it remains to show that F(B U C) € K(C') is algebraic. But now
notice that K(C') = (F(BUC))(K) (i.e. the field obtained by adjoining the elements of K
to F(BUC(C)). So it is enough to show that every element of K is algebraic over F'(B U ('),
as then every rational function of the elements of C' with coefficients in C' is algebraic too.
This is now automatic, since F(B) € K is algebraic. Hence F(BUC) € K(C) is algebraic,
and thus also F(Bu C) € L. So BuU C'is a transcendence basis of L over F', which proves
trdegp L = trdegp K + trdegy L. U



