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Exercise 1. Let F' be an algebraically closed field, and let I, J be ideals of R = F[xy, ..., x,].
Prove that VI € v/J if and only if V(J) € V(I).

Proof. Suppose that VI € v/.J. Note that V(v/.J) = V(J) because the power of a polynomial
and the polynomial itself have the same vanishing locus. Hence, if P € V(J) then f(P) =0
for all f € vJ. But then f(P) =0 for all f € I because I € VI € +/J, and so P € V(I).
Thus V(J) € V(I).

Now suppose that V(J) € V(I). Then I(V(I)) € I(V(J)), since f € I(V(I)) iff f
vanishes on V(I), but in particular then f vanishes on V(.J). By the Nulstellensatz this
implies that VIc V. [

Exercise 2. Let F' be an algebraically closed field, and let I, J be ideals of R = F[xq, ..., x,].
Show that

(H VI)uV(J)=V({InJ)=V(IJ])

Q) VI)nV(J)=V(I+J)

Proof. (1) First we show that V(I)uV(J)cV(INnJ)cV(IJ). AsIJcInJclI, by
the previous question V(1) € V(I nJ) € V(IJ) and so by symmetry V(I) UV (J) €
V(InJ)cV(IJ).

For the other inclusion, suppose conversely that there exists P € V(IJ) \ (V(I) U
V(J)). As Pisnotin V(I)uU V(J) we can find f € I such that f(P) # 0 and g € J
such that g(P) # 0. But then (fg)(P) # 0 and fg € I.J. This contradicts P € V(I.J).

(2) AsT €I+ J wehave V(I+J)c V(I). Soby symmetry V(I +J)cV(I)nV(J).
Conversely suppose P € V(I)nV(J). Then f(P) =0 for every f € I and g(P) =0
for every g € J, hence (f + g)(P) =0 forevery f+g€ I+ J. Thus Pe V(I +J)
and we conclude V(I +J) =V({I)nV(J)

Remark: Let (;);es be a collection of ideals of R = F[zy,...,x, ], where ¥ is an infinite
indexing set. The same argument as in point (2) above shows that (), V([;) = V(3, LL).
However, it is not true that in general | J, V([;) = V([), ;). For example, let R = C[xz],
¥ =Nand I, = (z —n). Then J, V(2 —n) = Nand V([),(z —n)) =V(0) =C. O

Exercise 3. Let R be a commutative ring, and let I, J be ideals of R. In both Spec(R)
and m-Spec(R), show that

() V(IY)uV(J)=V({InJ)=V(IJ)

) V(I)nV(J)=V({I+J)

Proof. (1) Again, since IJ € InJ S I, V(I)<cV(InJ)<c V(IJ). Doing the same for J,
we deduce that
V(D) uV(J)SV(InJ)cV(I])
so we are left to show that V(IJ) € V(I) € V(J). Let p be a prime ideal containing
IJ, and assume by contradiction that both I ¢ p (let z € I'\p) and J € p (let y € I'\p).

Since p is prime, xy € I.J \ p, which contradicts that I.J € p.
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(2) Since I € I+J, V(I+J) € V(I). Doing the same for J gives V(I +J) € V(I)nV(J).
On the other hand, if p contains both I and J, it contains I + J, so V(I) nV(J) ¢
V(I+J).

[

Exercise 4. o Let R, S be commutative rings, and let f : R — S be a ring morphism.
Show that there is an induced continuous map Spec(S) — Spec(R).

o Let R bearing and I an ideal. Show that the morphism Spec(R/I) — Spec(R) induced

by the quotient map corresponds to the inclusion of the closed subset V(1) € Spec(R).

Proof. o Let 0 : Spec(S) — Spec(R) be defined by 8(p) = f~'(p) (recall from basic ring
theory that the preimage of a prime ideal is always prime). To show the continuity
of 0, we show that the preimage of closed subsets is closed. Let V(I) € Spec(R) be
a closed subsets: we claim that 07 (V(I)) = V((f(I))). If p € V((f(I))), then in
particular p 2 f(I), so 6(p) = f~'(p) 2 I.

Conversely, if p € 0 (V(I)), then I € 6(p) = f~(p), and hence f(I) € p. Since p is
an ideal, we deduce that (f(I)) € p so we conclude.

o This is an immediate consequence of the correspondence theorem.
O

Exercise 5. Prove that Z = {(u”,v*v,uv”,v") : u,v € C} ¢ C* is an algebraic set (i.c.
there exists an ideal I of C[xy, x5, x3, 4] such that Z = V(I)). Find I(Z).
[ Hint: Make sure you have everything!]

Proof. First we prove that Z is an algebraic set. To start, let R = Clw,x,y, z]; by trying
around a bit one finds that the polynomials R wy, y2 —xz and wz — xy vanish on Z. So
if I := (2" —wy,y” — zz,wz — zy) € R, then Z € V(I). We are now going to prove that
Z = V/(I), and hence that Z is algebraic. In order to do so, let P = (zg, 2, 25, 23) € V(I)
be arbitrary. Now notice that
3 xQ—wy wz—zry 2
L1 = ToliTy = Tols,

where the polynomial over the equality sign indicates which equation is used. Similarly, we
have

3y -z wz—zy 2
Ty = T1XoTyz =TT
Therefore, if x5 = 0, then x; = x5 = 0 as well, and hence by choosing any v € C such that
VP = x3 we see that P € Z. Similarly, if x3 = 0 then x; = x5 = 0 and by choosing any u € C
with u® = xo we obtain P € Z. Hence we may suppose that xoxs # 0.
Now let @, € C \ {0} be such that z, = 4" and 23 = 0°. By substituting this into the
above two equations, we obtain that there exist «, 5 € C such that o’ = 53 =1 and

~~2

~2~
ry=au v and x5 = fuv.

Now notice that

~,

~3~3 ~3
UV = XgTy = 1y = afUV

and so as uv # 0 we obtain a8 = 1. So by introducing v = au and v = v, we obtain
2o = u’, 1, = uv, 19 = wv” and z3 = v°. Hence P € Z, so we conclude that Z = V(I), and



thus Z is algebraic.

Now to finish the exercise, we are going to prove that I = I(Z); by the above we already
know I € I(Z). Let us investigate the class f + I of a polynomial f € R. By using the
equation xy —wz € I, we may suppose that no monomial in f contains both z and y. Then
by using the equations x” — w z,y3 —wi’ € I, we may assume that no monomial in f is
divisible by 2° nor by y3. Finally, by using the equations 2’ — wy,y2 —xz € I, we may
suppose that no monomial in f is divisible by z° nor yz. In conclusion, we have that for
every [ € R there exist pg, p1,ps € Clw, z] such that

f+1=po+axp +ypy+ 1.

Now in order to prove the inclusion of I(Z) inside I, let f € I(Z) be arbitrary. Consider
the C-algebra morphism

@:C[w,m,y,z]ﬁC[u,v]
3 2 2 3
wHe U, TP uUY, YU, 2.

Then as f € I(Z), we have that ®(f) vanishes on every point of C*, and thus ®(f) = 0.

In particular, we have R wy,y2 —xz,wz —xy € Ker®, and so I € Ker ®. Now by the
argument in the beginning of this paragraph, there exist po, p;, ps € Clw, 2] and g € I such
that f = py + xp; + yps + ¢g. Hence, as ®(f) = ®(g) = 0, we obtain

0= ®(py + zp1 + yp2) = po(u’,0°) + opy (v, 0”) + wv’py (u®, 0*)

inside C[u,v]. This then shows that py = p; = p, =0, and thus f =g € I. As f € I(Z)
was arbitrary, we conclude I(Z) € I, and thus I(Z) = I.

It is quite natural to expect the dimension of an algebraic set to be equal to the dimension
of the space it is embedded into minus the number of generators of its ideal, as in linear
algebra. This example shows that this idea is false in general.

O

Exercise 6. Let I be an algebraically closed field, and X € F™ an algebraic set with ideal
I = I(X). Define the coordinate ring A(X) of X to be A(X) := Fly,... >9Cm:|/]. Notice
that every element of A(X) naturally defines a set-map from X to F, and thus one may
think of A(X) as the set of global algebraic functions on X.

() If X =V({) < F" and Y = V(J) € F" are algebraic sets with ideals I = I(X)
and J = I(Y), then a morphism f : X — Y is defined to be a set-map from the
points of X to the points of Y, for which the following holds: there exists a vector
(hi,...,hy,) of polynomials h; € F[xy,...,2,,], such that for every a € X we have
fla) = (hi(a), ho(a), ..., h,(a)) €Y,

Show that whenever there is a morphism f : X — Y of algebraic sets as defined
above, there is a unique homomorphism of F-algebras A\; : A(Y') = A(X), such that



the following diagram commutes.

yi—h;
Flys oo yul == Flay, o 20]

L,

A(Y) A(X)

Here the vertical arrows are the quotient maps stemming from the definition of A(X)
and A(Y), and the top horizontal map is given by sending y; to h;(x1, ..., x,,).

(2) With setup as above, show that if there is a homomorphism of F-algebras A : A(Y') —
A(X), then there is a morphism f : X — Y such that A = \;. Furthermore, all choices
of f are the same (as set-maps from the points of X to the points of V).

Proof. (1) Let I = I(X) and J = I(Y). Let ¢ be the given F-algebra homomorphism
Flyi, ..., yn] = Flxq, ..., 2], sending y; to h;.

If the homomorphism A = A exists, the diagram implies that for any p + J € A(Y)
we must have \(p + J) = ¢(p) + I. So A is unique if it exists.

In order to show that it exists, let 7y ¢ F[x,...,z,,] = A(X)and my ¢ Flyy,...,y,]
A(Y) be the projection maps. We want to show that 7wy o ¢ factors through A(Y’),
and to this end we want to show that J € Ker(mx o). Solet p € J be arbitrary. Then
o(p) = p(hi(xy,...,20), ..., hp(xq,. .., 2,,)). Hence, if we evaluate ¢(p) at a point
a € X, we obtain ¢(p)(a) = p(hi(a),...,h,(a)) = p(f(a)). But then as f(a) € Y
and p € J, we obtain ¢(p)(a) = p(f(a)) = 0. Hence ¢(p) vanishes on every point of
X, and thus ¢(p) € I. Hence p € Ker(nx o ¢), and thus J € Ker(nx o ¢). Therefore,
there exists a morphism of F-algebras A : A(Y) —» A(X) such that 7x 0 ¢ = X\ o 7y,
i.e. the above diagram commutes.

(2) Now suppose we are given a homomorphism A : A(Y) - A(X). For j = 1,...,n, choose

h; € Flzy,...,x,]such that X(y;+J) = h;+1. Let ¢ : Flyy,...,yn] = Flx1,..., 2]
be defined as before, i.e. y; is mapped to h;.
Define the morphism of algebraic sets f : F'" — F" by f(a) = (hi(a), ..., h,,(a)). We
must show that if a € X then f(a) € Y. For this it is enough to show that p(f(a)) = 0
for all p € J, by the Nullstellensatz. But as in the previous point, we have p(f(a)) =
p(hi(a), ..., hy,(a)) = ¢(p)(a). So if we can show that ¢(p) € I(X) then we are done.
But now notice that by definition of h4,...,h, we have ¢(p) + I = X(p+ J) =0, so
é(p) € I. Hence f : ™ — F" restricts and co-restricts to a morphism of algebraic
sets f : X = Y. By comparing with the previous point, it is then straightforward to
check that A = Ay, as both send y; + J to h; + 1.

Now we must show that two choices of lifting k; and h; of h; result in the same map
on points of X. This holds because h; = h; + p; for some p; € I, as the lifting is well
defined up to addition of an element of I, but p; vanishes on all points of X. Hence
hi(a) = hi(a) for all a € X, so (hy,...,h,) and (h),..., h)) define the same set-map.

OJ

Exercise 7. Let I’ be an algebraically closed field. Let X be an algebraic set in F" with
ideal I(X) = I. Prove that points of F" contained in X are naturally in bijection with

maximal ideals of the coordinate ring A(X) = Flay, ..., %]/[
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Proof. Given a point P = (a4, ...,a,) € X, let mp = (z; — ay,...,x,, — a,). Since P € X,
we have I € mp by Exercise 1. Thus mp is a maximal ideal containing I(X), and hence
defines a maximal ideal mp of A(X) = Flzy, ..., fUn]/[ Conversely, a maximal ideal m of
A(X) = Flzy, -~-737n]/] is equivalent to a maximal ideal m of F[zy,...,2,] containing I.
By the Weak Nullstellensatz m = (2, — a4, ..., x,, — a,), for some a; € F. The containment
I € m implies that P = (a4, ...,a,) € X, and thus m = mp. Thus the set of maximal ideals
of A(X) is given by {mp | P € X}. Finally, suppose that mp = mg for P,Q € X. Then
necessarily mp = mg and thus {P} = V(mp) = V(mg) = {Q}, and thus P = Q. Thus there

is a bijection between X and the set of maximal ideals A(X).
0



