
EPFL - Fall 2024 Domenico Valloni

Rings and modules Exercises

Sheet 6 - Solutions

There was one bonus exercise on this problem sheet. The exercise was denoted by the
symbol ¹ next to the exercise number.

Exercise 1. Let R � k�x, y� be the polynomial ring in two variables over an algebraically
closed �eld k. Recall that an ideal m in a ring R is maximal if it is not properly contained
in any other proper ideal of R. In this exercise you can use freely the Theorem below, which
will be proven later in the course.

Theorem (The weak Nullstellensatz in two variables). Let k be an algebraically closed �eld.
Every maximal ideal m in the ring k�x, y� is of the form m � �x�a, y�b� for some a, b " k.

Show the following:

(1) If M is a �nite length module over R, then the quotients of its composition series are
of the form Rª�x � a, y � b�.

(2) If M is a module such that Ann�M� O �x � a, y � b�, then Ann�Exti�M,N�� O�x � a, y � b� for every R-module N .�Hint : Consider the multiplication by x � a resp. y � b on M and the induced maps

on Ext
i
R�M,N�. Recall also Exercise 7 of Sheet 4.�

(3) If N is any �nitely generated module over R, then Ext
i �Rª�x � a, y � b�, N� has �nite

length.�Hint : Use the previous point.�
(4) For every �nite length module M and for every �nitely generated module N over R,

Ext
i
R�M,N� has �nite length.�Hint : Use the long exact sequence for a compostion series.�

Proof. (1) Let 0 � M0 $ M1 $ � � � $ Mn � M be a composition series. Since Qi ��

MiªMi�1
is simple we have Qi 	

RªAnn�Qi� by Exercise 1 on Sheet 1. As thus
R-submodules of Qi correspond to ideals of R containing Ann�Qi�, we obtain that
Ann�Qi� is maximal. Hence, we conclude by the weak Nullstellensatz.

(2) By Exercise 7.4 of Sheet 4, multiplication by r " R on M induces multiplication by r

on Ext
i�M,N�. Hence if r " Ann�M�, multiplication by r is equal to multiplication by

0 on M , and hence multiplication by r is equal to multiplication by 0 on Ext
i�M,N�,

and thus r " Ann�Exti�M,N��. Hence we obtain Ann�M� N Ann�Exti�M,N�� which
is enough to conclude.

(3) By the previous point Ext
i �Rª�x � a, y � b�, N� has a natural structure as

Rª�x � a, y � b� 	 k module, and the R-submodules are precisely the k-submodules.

It is therefore su�cient to prove that Ext
i �Rª�x � a, y � b�, N� has �nite length over

k, i.e. is a �nite dimensional k-vectorspace. To achieve this, we will show that

Ext
i �Rª�x � a, y � b�, N� is a �nitely generatedR-module. Let Pa � Rª�x � a, y � b�

be a free resolution. Since R is a Noetherian ring every submodule of R
n
is �nitely gen-

erated, hence we may assume each Pi is �nitely generated. Observe thatHomR�Rn
, N� 	

N
n
is �nitely generated for every n ' 0. Again using that R is Noetherian any sub-

module or quotient of a �nitely generated module is �nitely generated, therefore we
1
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conclude that Ext
i �Rª�x � a, y � b�, N� is a �nitely generated R-module. This im-

plies that Ext
i �Rª�x � a, y � b�, N� is a �nitely generated Rª�x � a, y � b�-module

and hence a �nite dimensional k-vectorspace.
(4) We prove this by induction following the hint. To this end let 0 � M0 $ M1 � � � $

Mn � M be a composition series, we note that since M1 is simple we have that M1 	

Rª�x � a, y � b� and thus Ext
i
R�M1, N� is of �nite length by the previous point. We

have a short exact sequence

0 M1 M2
M2ªM1

0

which induces an exact sequence

� Ext
i
R �M2ªM1

, N� Ext
i
R�M2, N� Ext

i
R�M1, N� � .

By passing to the kernel on the left and the image on the right (since being of �nite

length is stable under quotients and submodules) we can assume that Ext
i
R�M2, N� is

the middle term in a short exact sequence with kernel and image of �nite length, but
then it follows that Ext

i
R�M2, N� is of �nite length. We can now repeat the argument for

M3 and so on and so forth. By induction, this proves that Ext
i
R�M,N� � Ext

i
R�Mn, N�

has �nite length for all i ' 0.
□

Exercise 2. Let R � k�x, y� be as in the previous exercise (k is algebraically closed). We
say that a �nite length module is supported at �x�a, y�b� if only Rª�x � a, y � b� appears
as quotients in the composition series. Show that if M is a �nite length module supported

at �x � a, y � b�, then Ext
i
R �M, Rª�x � a¬, y � b¬�� � 0 for all �a¬, b¬� j �a, b�.

Proof. We �rst show that Ext
i
R �Rª�x � a, y � b�, Rª�x � a¬, y � b¬�� � 0 for all i ' 0. By a

similar argument as in Exercise 1 of this sheet (by using points (3) and (4) of Exercise 6 on

Sheet 4) we have that both �x�a, y�b� and �x�a¬, y�b¬� are included in the annihilator of

Ext
i
R �Rª�x � a, y � b�, Rª�x � a¬, y � b¬��. Therefore, the ideal �x� a, y � b�� �x� a¬, y �

b
¬� � R is in the annihilator of Ext

i
R �Rª�x � a, y � b�, Rª�x � a¬, y � b¬��, which implies

Ext
i
R�R©�x � a, y � b�, R©�x � a¬, y � b¬�� � 0.

Let 0 � M0 $ M1 � � � $ Mn � M be a composition series. Denote N � R©�x � a
¬

, y � b
¬�.

We can now conclude by �rst looking at the short exact sequence

0 M1 M2 M2©M1 0

which induces an exact sequence

� Ext
i
R �M2ªM1

, N� Ext
i
R�M2, N� Ext

i
R�M1, N� � .

From here we see that Ext
i
R�M2, N� � 0, since the other two modules are trivial by what

has already been proven. We continue, upon replacingM1 withM2 andM2 withM3, we can
conclude in an analog way that Ext

i
R�M3, N� � 0. We continue step by step, to conclude

by induction that Ext
i
R �M, Rª�x � a¬, y � b¬�� � Ext

i
R �Mn, Rª�x � a¬, y � b¬�� � 0. □
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Exercise 3. Show using the long exact sequence of cohomology that if Ext
1
R�M,N� � 0,

then every extension 0 // N // K // M // 0 splits.

Proof. Denote by i the injection i � N � K. By the long exact sequence of Ext-modules,
we obtain that

0 // HomR�M,N� // HomR�K,N� �`i // HomR�N,N� // 0

is exact. In particular, there exists q " HomR�K,N� such that q` i � idN . Thus by Exercise
3 on Sheet 4, the sequence splits. □

Exercise 4. ¹ Let R � k�x, y�, and let M � R©�x, y�.
(1) Show that Ext

1
R�M,M� 	M2

.

Note that there is canonical bijection k � M , sending λ " k to the class of the constant
polynomial λ modulo �x, y�. In particular, there is also a natural bijection k

2
�M

2
.

(2) For a given �λ, µ� " k2 ¯ r�0, 0�x, de�ne
Nλ,µ � R©�x2, y2, xy, λy � µx�,

let φ�Nλ,µ �M be the map induced by the quotient map R �M , and let ψ�M � Nλ,µ

be the map sending the class of 1 to the class of ��xa � yb�, where a, b " k are any
elements such that λa � µb � 1.
Then show that the Yoneda extension associated to �λ, µ� " k2¯r�0, 0�x is isomorphic

to the sequence

0�M
ψ
�� Nλ,µ

φ
��M � 0.

(3) Under what conditions on �λ, µ� and �λ¬, µ¬� do we have an isomorphism Nλ,µ 	 Nλ¬,µ¬?
Hint: Think about torsion.

Proof. (1) This computation was already made in the lecture notes. Let us recall it quickly.
Consider the projective resolution

0� R
f2
�� R

2 f1
�� R

of M , where f1�a� � a�y,�x� and f2�b, c� � bx� cy. Then this is truly a resolution by
the lecture notes, and applying Hom��,M� to it gives

Hom�R,M�� Hom�R,M2�� Hom�R,M�,
and a computation which we already did showed that both maps in this sequence were
zero. This, Ext

1�M,M� 	 Hom�R2
,M� 	M2

, where the second isomorphism is given
by sending f �R

2
�M to �f�1, 0�, f�0, 1�� "M2

.
(2) Let �λ, µ� " k2 ¯ r�0, 0�x. Then the associated element in Ext

1�M,M� � Hom�R2
,M�

is the function ϕ�R
2
� M is θ�a, b� � �aλ � bµ� by the previous point. Therefore, we

know by the course (c.f. Notation 5.6.5) that the associated exact sequence is

0�M
α
�� coker �R2 �ϕ,f1�

�����M hR
 β
��M � 0,

where α�a� � ��a, 0�� and β � �f0 ` prR�, where f0�R �M is the quotient map.
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Let S denote the middle term of this sequence. We want to �nd an explicit isomor-
phism between the middle term and Nλ,µ. In fact, there is a natural map π�R � S,
given by the composition

R
�0,id�
����M hR � S.

Then
` x

2
" ker�π�, because �0, x2� � �ϕ, f1��x, 0�;

` y
2
" ker�π�, because �0, y2� � �ϕ, f1��0, y�;

` xy " ker�π�, because �0, xy� = �ϕ, f1��y, 0�;
` λy � µx " ker�π�, because �0, λy � µx� � �ϕ, f1���µ, λ�.
Hence, �x2, xy, y2, λy�µx� N ker�π�. Let us show the other containment, so suppose

that a " R satis�es π�a� � 0. Then by de�nition, there exists �b, c� " R2
such that

�0, a� � ��λb � µc�, xb � yc� "M hR.

Write b � b0 � b
¬

, where b0 " k is the constant term, and b
¬

" �x, y�. Similarly, write
c � c0 � c

¬

. Then �λb � µc� � 0 is the same as saying that λb0 � µc0 � 0 " k, or
equivalently λb0 � �µc0.
Then we can write

a � bx � cy � b0x � c0y � d,

where d " �x2, xy, y2�. Hence, to conclude, we must show that b0x� c0y " ��µx�λy�.
Assume without loss of generality that λ j 0. Then b0 �

�µ

λ
c0, so

b0x � c0y � c0 ��µλ x � y	 � c0
λ
��µx � λy� " ��µx � λy�.

The computation is exactly the same when µ j 0, so we conclude the proof that
ker�π� � �x2, xy, y2, λy � µx�.
Finally, let us show that π is surjective. Fix elements δ, ϵ " k such that λδ � µϵ � 1

(this is possible since either λ j 0 or µ j 0). Then given any ��m�, r� " M h R, we
have that

��m�, r� � ��m��λδ � ϵµ�, r� � �ϕ, f1���mδ,mµ�� � �0, r � �mδx �mϵy��,
so ���m�, r�� � π�r � �mδx �mϵy�, proving the surjectivity of π.
Thus, the �rst isomorphism theorem gives us that Nλ,µ 	 S. We have a diagram as

follows:
Nλ,µ

0 M S M 0,

π

α β

so we automatically have an isomorphism of complexes

0 M Nλ,µ M 0

0 M S M 0,

π
�1
`α

id π

β`π

id

α β

which in particular shows that the top row is a short exact sequence (and hence we
have an isomorphism of Yoneda extensions).
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Let us compute explicitly the two maps of the top row. It follows directly from
the de�nitions that the composition β ` π�Nλ,µ � M is simply the quotient map.

Furthermore, the composition π
�1
` α�M � Nλ,µ is by de�nition given by sending

�1� to π
�1��1, 0��. However, it follows from our computation above that ��1, 0�� �

π���δx � ϵy��, so we are done.
(3) We are going to show that

Nλ,µ 	 Nλ¬,µ¬ ¿ there exists s " k
�

s.t. s�λ, µ� � �λ¬, µ¬�
(or in other words if they span the same line in k

2
).

First of all, note that if there exist s " k ¯ r0x, such that s�λ, µ� � �λ¬, µ¬�, then
�x2, xy, y2, λy � µx� � �x2, xy, y2, s�1�λ¬y � µ

¬

x�� � �x2, xy, y2, λ¬y � µ
¬

x�, so Nλ,µ �

Nλ¬,µ¬ .
Our goal is to show that this is the only way that the modules Nλ,µ are isomorphic.

Hence, assume that there are �λ, µ�, �λ¬, µ¬� " k
2 ¯ r�0, 0�x such that Nλ,µ 	 Nλ¬,µ¬ .

Then in particular,

�x2, xy, y2, λy � µx� � Ann�Nλ,µ� � Ann�Nλ¬,µ¬� � �x2, xy, y2, λ¬y,�µ¬x�.
Assume that �λ, µ� and �λ¬, µ¬� are not collinear in k

2
. In particular, they span k

2
as

a vector space, so there exist s, t " k such that

s�λ, µ� � t�λ¬, µ¬� � �1, 0�.
In particular,

s�λy � µx� � t�λ¬y � µ¬x� � y,
so y " �λy � µx, λ¬y � µ¬x�. Similarly, x lies in this ideal, so given that

λ
¬

y � µ
¬

x " �x2, xy, y2, λy � µx�
by assumption, we deduce that x, y " �x2, xy, y2, λy � µx�, so

�x2, xy, y2, λy � µx� � �x, y�
and Nλ,µ � R©�x, y� � M . However, this is impossible since Nλ,µ has length 2 (by
additivity of the length) and M has length 1, so we obtained a contradiction. Thus,
we win.

□

Exercise 5. Let R � k�x, y�.
(1) Show that Ext

1 ��x, y�, Rª�x, y�� j 0.

(2) Construct a �nitely generated module M such that Tors�M� N M is not a direct
summand.

�Note: For M �nitely generated over a PID R, Tors�M� N M is always a direct summand
by the fundamental theorem for �nitely generated modules over PIDs.�
Proof. (1) Identify k � Rª�x, y� as usual. As seen on several occasions in this course, we

have a projective resolution

0� R � RhR � �x, y�� 0

where the morphisms are given by r ( ��ry, rx� and �r1, r2�( r1x�r2y, respectively.
To calculate Ext

1 ��x, y�, k� we apply Hom ��, k� and calculate the cohomology in
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degree one of the corresponding complex. That is, the cokernel of k h k � k given by�r1, r2� ( �r1y � r2x � 0. Here we used that multiplication by x and y are zero. In
particular we obtain

Ext
1 ��x, y�, k� � k j 0.

(2) We prove the following more general statement:

Lemma 0.1. Let R be a domain, N a torsion module (i.e. for all n " N , there exists
a non-zero r " R such that rn � 0) and L a torsion-free module. Let

0� N �M � L� 0

be a non-split short exact sequence. Then Tors�M� NM is not a direct summand.

Proof. We may assume N NM and L �M©N (this is just to make notations simpler).
First, note that Tors�M� � N . Indeed, since N is torsion, N N Tors�M�. Conversely,
given m " Tors�M�, let r " R be non-zero such that rm � 0. Then rπ�m� � 0, where
π �M �M©N denotes the quotient map. Since L is torsion-free, π�m� � 0, so r " N .

Now, assume N � Tors�M� was a direct summand. Then there would exist a
morphism M � N such that the composition N N M � M is the identity, or in
other words there exists a section of N NM (see Exercise 3 on sheet 4). By this same
exercise, this implies that the sequence

0� N �M �M©N � 0

is split, which is a contradiction with our hypotheses. □

To conclude, we have found that Ext
1 ��x, y�, k� j 0 so there exists a non-split

extension

0� k �M � �x, y�� 0

We are done by the previous lemma.
□

Exercise 6. Throughout this exercise, R will be a ring and M,N will be R-modules. We
will now see another way to compute the Ext-modules than the one we saw in the lectures
(one may say a 'dual' way). To do so, we need the following Lemma, which you may use
without proof.

Lemma 1. For every R-module N there exists an injective R-module homomorphism N � I
where I is an injective R-module.

(1) Using the above Lemma, show that any R-module N admits an injective resolution.
That is, there exists an exact sequence

0 N I
0

I
1

�
i
�1

i
0

where I
b
is an injective R-module for all b ' 0 (the numbers in superscript are just

indices, not exponents of any sort).
(2) Show that an R-module I is injective if and only if HomR��, I� is exact.�Reminder: By Lemma 5.2.2 of the lecture notes HomR��, I� is always left exact.�
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(3) Fix a projective resolution Pa�M and an injective resolution N 0 I
a

. Consider the
commutative diagram

� � �

0 HomR�M, I
1� HomR�P0, I

1� HomR�P1, I
1� �

0 HomR�M, I
0� HomR�P0, I

0� HomR�P1, I
0� �

a

0 HomR�P0, N� HomR�P1, N� �

0 0

d0,�1

δ�1,0

δ0,�1

δ0,0

d�1,1

d�1,0 d0,0

d0,1

δ1,0

δ1,�1

where da,b � � ` pa�1 and δa,b � i
b
` � for all a, b ' �1. Brie�y justify that this is

indeed commutative, and that all columns and lines of the diagram which are not blue
are exact.

(4) Show that H
0�HomR�M, I

a�� 	 H0�HomR�Pa, N��.
�Hint: Show that their images inside HomR�P0, I

0� coincide.�
(5) Show that H

1�HomR�M, I
a�� 	 H1�HomR�Pa, N��.

�Hint: Let C
0
�� HomR�P0, I

0� and C
1
� HomR�P1, I

0� h HomR�P0, I
1�, and let

∆
0
� C

0
� C

1
be the map sending x " C

0
to �d0,0�x�, δ0,0�x�� " C

1
. Show that

the cohomology groups in question both embed into coker�∆0� and that their images
therein coincide.�

�Remark: One can generalize the above results and prove that in fact H
i�HomR�M, I

a�� 	
H
i�HomR�Pa, N�� for all i ' 0, and thus the Ext-modules may also be computed by using

an injective resolution of the second module. To do so, one de�nes the modules C
m
��

,a�b�mHomR�Pa, Ib� and connecting maps ∆
m
� C

m
� C

m�1
similar to ∆

0
, where one

replaces δa,b by ��1�aδa,b to ensure ∆
m�1

` ∆
m
� 0. We thus obtain a complex C

a

, and

one can then prove that H
i�HomR�M, I

a�� and H i�HomR�Pa, N�� embed into H
i�Ca� with

equal image.�
Proof. (1) By the Lemma, there exists an injective map i

�1
� N 0 I

0
with I

0
injective.

Denote I
�1
� N for convenience. For b ' 1, let I

b
be an injective module such that

there exists an injective map coker�Ib�2 i
b�2

º I
b�1�0 I

b
, and let i

b�1
be the composition

I
b�1
� coker�Ib�2 i

b�2

º I
b�1�0 I

b
. Then it is straightforward to verify that

0 N I
0

I
1

�
i
�1

i
0

is an injective resolution.
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(2) Suppose that I is injective, and let

0 A B C 0
α β

be an exact sequence of R-modules. To verify that

0 HomR�C, I� HomR�B, I� HomR�A, I� 0
�`β �`α

is exact, it su�ces to verify that � ` α is surjective, as HomR��, I� is left exact by
Lemma 5.2.2. So let ϕ " HomR�A, I� be arbitrary. Then we have a diagram

0 A B

I

ϕ

α

and thus by de�nition of I being injective, there exists ψ � B � I making the diagram
commute. This precisely means �� ` α��ψ� � ϕ, so � ` α is surjective.
Conversely, suppose that HomR��, I� is exact, and suppose that we have a diagram

of R-modules

0 X Y

I.

g

f

Then as HomR��, I� is exact, the map �`f � HomR�Y, I�� HomR�X, I� is surjective.
In particular, there exists h � Y � I such that h ` f � g, and thus a commutative
diagram

0 X Y

I,

g

f

h

which proves that I is injective.
(3) Exactness of the non-blue rows follows as they are obtained from applying the exact

functor HomR��, Ib� to the exact sequence Pa �M � 0, and exactness of the non-blue
columns follows as they are obtained from applying the exact functor HomR�Pa,�� to
the exact sequence 0 � N � I

a

. The diagram commutes as vertical arrows are given
by post-composition and horizontal arrows are given by pre-composition, and these two
operations commute by associativity of composition.

(4) Let ϕ0,�1 " Ker�d0,�1� be arbitrary. Then by commutativity we have d0,0`δ0,�1�ϕ0,�1� �
0, and so by exactness there exists ϕ�1,0 " HomR�M, I

0� such that d�1,0�ϕ�1,0� �

δ0,�1�ϕ0,�1�. This shows that d�1,0�H0�HomR�Pa, N��� N δ0,�1�H0�HomR�M, Ia���,
and a completely symmetric argument yields also the reverse inclusion. We conclude
by injectivity of d�1,0 and δ0,�1.

(5) We employ the notations of the Hint. To construct a map H
1�HomR�Pa, N�� �

coker�∆0�, we have to verify that if ϕ1,�1 " im�d0,�1�, then �δ1,�1�ϕ1,�1�, 0� " im∆
0
.

Let ϕ0,�1 " HomR�P0, N� be such that ϕ1,�1 � d0,�1�ϕ0,�1�. By the commutativity and

exactness properties of the diagram, it is straightforward to verify that∆
0�δ0,�1�ϕ0,�1�� ��δ1,�1�ϕ1,�1�, 0�, and thus the latter is in the image of ∆

0
. Therefore, the composition
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Ker�d1,�1� 0 HomR�P1, N� 0 C
1
� coker�∆0� factors through H

1�HomR�Pa, N��,
i.e. we obtain a map α � H

1�HomR�Pa, N�� � coker�∆0� given by mapping the class
of ϕ1,�1 " Ker�d1,�1� to the class of �δ1,�1�ϕ1,�1�, 0�.
Now we verify that α is injective. To do so, suppose that ϕ1,�1 " Ker�d1,�1� is

such that �δ1,�1�ϕ1,�1�, 0� " im�∆0�; we have to show that then ϕ1,�1 " im�d0,�1�.
Let ϕ0,0 " HomR�P0, I

0� be such that ∆
0�ϕ0,0� � �δ1,�1�ϕ1,�1�, 0�. In particular,

we have δ0,0�ϕ0,0� � 0, so by exactness there exists ϕ0,�1 " HomR�P0, N� such that
ϕ0,0 � δ0,�1�ϕ0,�1�. Hence we obtain

δ1,�1�ϕ1,�1� � d0,0�ψ0,0� � d0,0�δ0,�1�ϕ0,�1�� � δ1,�1�d0,�1�ϕ0,�1��,
and so by injectivity of δ1,�1 it follows that ϕ1,�1 � d0,�1�ϕ0,�1�. So ϕ1,�1 is in the image
of d0,�1, and thus α is injective.
Now by a completely symmetrical argument, there exists and injective map
β � H

1�HomR�M, I
a�� � coker�∆0�, mapping the class of ϕ�1,1 " Ker�δ�1,1� to the

class of �0, d�1,1�ψ��1,1�. So what is left to show is that the image of α is the same as
the image of β. To this end, let ϕ1,�1 " Ker�d1,�1� be arbitrary. Then by commutativity

we have d1,0�δ1,�1�ϕ1,�1�� � 0, and so by exactness there exists ϕ0,0 " HomR�P0, I
0�

with d0,0�ϕ0,0� � δ1,�1�ϕ1,�1�. Then notice that

d0,1�δ0,0�ϕ0,0�� � δ1,0�d0,0�ϕ0,0�� � δ1,0�δ1,�1�ϕ1,�1�� � 0

and thus by exactness there exists ϕ�1,1 " HomR�M, I
1� such that d�1,1�ϕ�1,1� �

δ0,0�ϕ0,0�. By a similar string of equations as above, we obtain d�1,2�δ�1,1�ϕ�1,1�� � 0,
which by injectivity of d�1,2 gives ϕ�1,1 " Ker�δ�1,1�. Now we verify that α�ϕ1,�1 �

im�d0,�1�� � β��ϕ�1,1 � im�δ�1,0��. To this end, notice that

∆
0�ϕ0,0� � �d0,0�ϕ0,0�, δ0,0�ϕ0,0�� � �δ1,�1�ϕ1,�1�, d�1,1�ϕ�1,1�� � �δ1,�1�ϕ1,�1�, 0� � �0, d�1,1��ϕ�1,1��.

Thus the classes of �δ1,�1�ϕ1,�1�, 0� and �0, d�1,1��ϕ�1,1�� inside coker�∆0� coincide,
which proves α�ϕ1,�1 � im�d0,�1�� � β��ϕ�1,1 � im�δ�1,0��. We hence conclude that
imα N im β. By a completely symmetrical argument we also obtain the reverse inclu-
sion, and thus we are done.

□


