EPFL - Fall 2024 Domenico Valloni
Rings and modules Exercises
Sheet 6 - Solutions

There was one bonus exercise on this problem sheet. The exercise was denoted by the
symbol # next to the exercise number.

Exercise 1. Let R = k[z,y] be the polynomial ring in two variables over an algebraically
closed field k. Recall that an ideal m in a ring R is maximal if it is not properly contained
in any other proper ideal of R. In this exercise you can use freely the Theorem below, which
will be proven later in the course.

Theorem (The weak Nullstellensatz in two variables). Let k be an algebraically closed field.
Every mazimal ideal w in the ring k[x,y] is of the form m = (x —a,y—>b) for some a,b € k.

Show the following:

(1) If M is a finite length module over R, then the quotients of its composition series are
of the form R/(x —a,y—b)

(2) If M is a module such that Ann(M) 2 (z — a,y — b), then Ann(Ext'(M,N)) 2
(x — a,y — b) for every R-module N.
[Hint: Consider the multiplication by 2 — a resp. y —b on M and the induced maps
on ExtR(M, N). Recall also Exercise 7 of Sheet 4.]

(3) If N is any finitely generated module over R, then Ext’ (R/(x —a,y—b) N) has finite
length.
[ Hint: Use the previous point. ]

(4) For every finite length module M and for every finitely generated module N over R,
Extz(M, N) has finite length.
[ Hint: Use the long exact sequence for a compostion series. |

Proof. (1) Let 0 = My < M; < +-- < M, = M be a composition series. Since @Q; :=
]\41'/]\41._1 is simple we have ); = R/Ann(Qi) by Exercise 1 on Sheet 1. As thus
R-submodules of (); correspond to ideals of R containing Ann(();), we obtain that
Ann(Q);) is maximal. Hence, we conclude by the weak Nullstellensatz.

(2) By Exercise 7.4 of Sheet 4, multiplication by » € R on M induces multiplication by r
on Ext’(M, N). Hence if r € Ann(M ), multiplication by 7 is equal to multiplication by
0 on M, and hence multiplication by r is equal to multiplication by 0 on Ext'(M, N),
and thus r € Ann(Ext'(M, N)). Hence we obtain Ann(M) € Ann(Ext'(M, N)) which
is enough to conclude.

(3) By the previous point Ext’ (R/(x —a,y —b) N) has a natural structure as
R/(x —a,y —b) = k module, and the R-submodules are precisely the k-submodules.

It is therefore sufficient to prove that Ext’ (R/(I —a,y—b) N) has finite length over
k, i.e. is a finite dimensional k-vectorspace. To achieve this, we will show that
Ext’ (R/(x —a,y —b)s N) is a finitely generated R-module. Let P, — R/(x —a,y—b)
be a free resolution. Since R is a Noetherian ring every submodule of R" is finitely gen-
erated, hence we may assume each P, is finitely generated. Observe that Homz(R", N) =
N" is finitely generated for every n = 0. Again using that R is Noetherian any sub-

module or quotient of a finitely generated module is finitely generated, therefore we
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conclude that Ext’ (R/(x —a,y—b) N) is a finitely generated R-module. This im-

plies that Ext (R/(x —a,y —b)s N) is a finitely generated R/(x — a,y — b)-module
and hence a finite dimensional k-vectorspace.

(4) We prove this by induction following the hint. To this end let 0 = My < M-+ <
M, = M be a composition series, we note that since M, is simple we have that M, =
R/(x —a,y — b) and thus Extp(M;, N) is of finite length by the previous point. We
have a short exact sequence

0 > M, > M, > Myfpr, — 0
which induces an exact sequence
v —— Exty (Mo ppy, N) — Extp(My, N) — Extip(M;, N) — - .

By passing to the kernel on the left and the image on the right (since being of finite
length is stable under quotients and submodules) we can assume that Exty (M, N) is
the middle term in a short exact sequence with kernel and image of finite length, but
then it follows that Extr(M,, V) is of finite length. We can now repeat the argument for
M and so on and so forth. By induction, this proves that Ext(M, N) = Ext%(M,, N)
has finite length for all ¢ = 0.

OJ

Exercise 2. Let R = k[z,y] be as in the previous exercise (k is algebraically closed). We
say that a finite length module is supported at (z —a,y—b) if only R/(x —a,y — b) appears
as quotients in the composition series. Show that if M is a finite length module supported

at (z —a,y — b), then Ext (M, R/(x —d,y- b’)) =0 for all (a',b') # (a,b).

Proof. We first show that Ext% (R/(x —a,y—1b); R/(x —a,y— b')) =0foralli = 0. By a
similar argument as in Exercise 1 of this sheet (by using points (3) and (4) of Exercise 6 on
Sheet 4) we have that both (z —a,y—b) and (z—a',y—b) are included in the annihilator of
Exty (R/(x —a,y—1b) R/($ —a,y— b')). Therefore, the ideal (z —a,y —b) + (z —d',y —
V') = R is in the annihilator of Ext% (R/(x —a,y—b) R/(x —a,y— b')), which implies
Extp(R/(c = a,y = b), R/ (z = a',y = b)) = 0.

Let 0= My < M, --- < M, = M be a composition series. Denote N = R/(z —d',y —b').
We can now conclude by first looking at the short exact sequence

0 >]\4—1 >M2 >M2/M1HO

which induces an exact sequence
o — Exty (Ma/ ppy, N) — Extp(My, N) — Extip(M;, N) — - .

From here we see that Ext%(M,, N) = 0, since the other two modules are trivial by what
has already been proven. We continue, upon replacing M; with M, and M, with Ms, we can
conclude in an analog way that Extp(M;, N) = 0. We continue step by step, to conclude
by induction that Ext% (M, R/(x —a,y— b')) = Extlé (Mn, R/(I —a,y— b')) = 0. O
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Exercise 3. Show using the long exact sequence of cohomology that if Ext}{(]\/[, N) =0,
then every extension 0 N K M 0 splits.

Proof. Denote by ¢ the injection ¢ : N — K. By the long exact sequence of Ext-modules,
we obtain that

—03

0 —— Homp (M, N) — Homp(K, N) —= Hompz(N,N) —=0

is exact. In particular, there exists ¢ € Homp (K, N) such that goi = idy. Thus by Exercise
3 on Sheet 4, the sequence splits. 0]

Exercise 4. ® Let R = k[xz,y], and let M = R/(x,y).

(1) Show that Extp(M, M) = M.
Note that there is canonical bijection £k — M, sending A\ € k to the class of the constant
polynomial A modulo (z,y). In particular, there is also a natural bijection k> — M?.

(2) For a given (\, 1) € k> \ {(0,0)}, define

N/\,u = R/(I27 y27 xy, /\y - /LT),

let ¢: N, , = M be the map induced by the quotient map R — M, and let ¢: M — N, ,
be the map sending the class of 1 to the class of —(xa + yb), where a,b € k are any
elements such that \a + pb = 1.

Then show that the Yoneda extension associated to (\, 1) € k°\{(0, 0)} is isomorphic
to the sequence

0o M3 N, 5 M0

(3) Under what conditions on (A, 1) and (X, ') do we have an isomorphism Ny, = Ny i?
Hint: Think about torsion.

Proof. (1) This computation was already made in the lecture notes. Let us recall it quickly.
Consider the projective resolution

0->rREBE R R

of M, where f,(a) = a(y, —x) and fy(b, c¢) = bx + cy. Then this is truly a resolution by
the lecture notes, and applying Hom(—, M) to it gives

Hom(R, M) —» Hom(R, M”) —» Hom(R, M),
and a computation which we already did showed that both maps in this sequence were
zero. This, Ext' (M, M) = Hom(R>, M) = M, where the second isomorphism is given
by sending f: R> —» M to (f(1,0), f(0,1)) € M>.
(2) Let (A, p) € k*\ {(0,0)}. Then the associated element in Ext'(M, M) = Hom(R>, M)

is the function ¢: R* — M is 6(a, b) = [a) + bu] by the previous point. Therefore, we
know by the course (c.f. Notation 5.6.5) that the associated exact sequence is

OﬁMicoker(RzmMEBR)iMﬁ(),

where a(a) = [(a,0)] and 8 = [fy o pry], where fy: R — M is the quotient map.



Let S denote the middle term of this sequence. We want to find an explicit isomor-
phism between the middle term and N, ,. In fact, there is a natural map 7: R — S,

given by the composition

(0,id)
R— M@®R—-S.

Then

o 2° € ker(r), because (0,2°) = (¢, f1)(z,0);

o y” € ker(m), because (0.y”) = (¢, f1)(0,y);

o zy € ker(r), because (0,zy) = (¢, f1)(y,0);

o \y — px € ker(r), because (0, \y — px) = (&, f1)(—p, A).

Hence, (z°, 2y, y°, \y— pz) € ker(r). Let us show the other containment, so suppose
that a € R satisfies 7(a) = 0. Then by definition, there exists (b, c) € R such that

(0,a) = ([Ab+ pc],zb+yc) € M & R.

Write b = by + b, where by € k is the constant term, and b’ € (z,y). Similarly, write
¢ =cy+c. Then [Ab+ puc] = 0 is the same as saying that \by + pucy = 0 € k, or
equivalently A\by = —pcy.

Then we can write

a=br+cy=byxr+cyy+d,
where d € (2%, zy,y”). Hence, to conclude, we must show that byz + coy € (—uz + \y).
Assume without loss of generality that A\ # 0. Then by = _TMCO’ SO

—u c
bor + coy = ¢ (Taz + y) = XO(—/MZ + \y) € (—ux + \y).

The computation is exactly the same when p # 0, so we conclude the proof that
ker(m) = (2°, 2y, y°, \y — ux).

Finally, let us show that 7 is surjective. Fix elements 0, € € k such that \d + pue =1
(this is possible since either A # 0 or p # 0). Then given any ([m],r) € M & R, we
have that

(Iml,r) = (ImJ(A0 + en), r) = (¢, f1)((md, mp)) + (0,7 = (mbx + mey)),

so [([m],7)] = n(r — (mdx + mey), proving the surjectivity of .
Thus, the first isomorphism theorem gives us that N, , = S. We have a diagram as
follows:

Ny
7
00— M —23 5 —"— M —0,
so we automatically have an isomorphism of complexes
00— M 28 Ny, Ty s g
bk
00— M —23 5 —T M —0,

which in particular shows that the top row is a short exact sequence (and hence we
have an isomorphism of Yoneda extensions).
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Let us compute explicitly the two maps of the top row. It follows directly from
the definitions that the composition 3 o 7: Ny, — M is simply the quotient map.

Furthermore, the composition 7loa:M - N Ay 18 by definition given by sending
[1] to @ '[(1,0)]. However, it follows from our computation above that [(1,0)] =
7(—=(0x + ey)), so we are done.

We are going to show that

Ny, = Ny, < there exists s € st s(O\ ) = (N, 1)
(or in other words if they span the same line in 7).

First of all, note that if there exist s € k \ {0}, such that s(\, ) = (X', z'), then

(2", 2y, ", Ay — px) = (2%, 2y, s Ny = p'z)) = (2%, 2y,9%, Ny = p/z), so Ny, =
N)\',,u"

Our goal is to show that this is the only way that the modules N, , are isomorphic.
Hence, assume that there are (\,p), (X, 1)) € &>\ {(0,0)} such that Ny, = Ny
Then in particular,

(2*, 2y, 5, Ay — px) = Ann(N, ) = Ann(Ny ) = (27, 2y, y*, Ny, —p'z).

Assume that (), ) and (X, i') are not collinear in k°. In particular, they span k° as
a vector space, so there exist s,¢ € k such that

s(A, p) = t(N, 1) = (1,0).
In particular,
I !
s(Ay — px) + t(Ay — px) =y,
so y € (\y — pz, \'y — pi'z). Similarly, z lies in this ideal, so given that
Ny = p'z € (2, 2y, y", \y — p)
by assumption, we deduce that z,y € (z°, 2y, y°, \y — uz), so
2 2
(2%, 2y, y" Ay — p) = (z,y)
and N, , = R/(z,y) = M. However, this is impossible since N, , has length 2 (by

additivity of the length) and M has length 1, so we obtained a contradiction. Thus,
we win.

O

Exercise 5. Let R = k[z,y].

(1)
(2)

Show that Ext' ((m,y), R/(%y)) # 0.
Construct a finitely generated module M such that Tors(M) € M is not a direct
summand.

[ Note: For M finitely generated over a PID R, Tors(M) € M is always a direct summand
by the fundamental theorem for finitely generated modules over PIDs. ]

Proof. (1) Identify k = R/(% y) as usual. As seen on several occasions in this course, we

have a projective resolution
0->R->R®&R- (r,y) >0

where the morphisms are given by r — (—ry,rz) and (7, ry) - 72 + 19y, respectively.
To calculate Ext' ((z,y),k) we apply Hom (—, k) and calculate the cohomology in



degree one of the corresponding complex. That is, the cokernel of £ ® k — k given by
(ri,7m9) = —ryy + rox = 0. Here we used that multiplication by x and y are zero. In
particular we obtain

Ext' ((z,y),k) =k # 0.

(2) We prove the following more general statement:

Lemma 0.1. Let R be a domain, N a torsion module (i.e. for alln € N, there ezists
a non-zero r € R such that rn = 0) and L a torsion-free module. Let

O->N->M->L-0
be a non-split short exact sequence. Then Tors(M) € M is not a direct summand.

Proof. We may assume N € M and L = M /N (this is just to make notations simpler).
First, note that Tors(M) = N. Indeed, since N is torsion, N € Tors(M). Conversely,
given m € Tors(M), let r € R be non-zero such that rm = 0. Then rx(m) = 0, where
7wt M — M|N denotes the quotient map. Since L is torsion-free, w(m) =0, sor € N.

Now, assume N = Tors(M) was a direct summand. Then there would exist a
morphism M — N such that the composition N € M — M is the identity, or in
other words there exists a section of N € M (see Exercise 3 on sheet 4). By this same
exercise, this implies that the sequence

0->N->M->MIN->0

is split, which is a contradiction with our hypotheses. 0

To conclude, we have found that Ext' ((z,y),k) # 0 so there exists a non-split
extension

0—-k-> M- (x,y) >0

We are done by the previous lemma.
O

Exercise 6. Throughout this exercise, R will be a ring and M, N will be R-modules. We
will now see another way to compute the Ext-modules than the one we saw in the lectures
(one may say a ’dual’ way). To do so, we need the following Lemma, which you may use
without proof.

Lemma 1. For every R-module N there exists an injective R-module homomorphism N — [
where I is an injective R-module.

(1) Using the above Lemma, show that any R-module N admits an injective resolution.
That is, there exists an exact sequence

—1

0 >NZ>IO z>Il

~

where I” is an injective R-module for all b = 0 (the numbers in superscript are just
indices, not exponents of any sort).

(2) Show that an R-module I is injective if and only if Homp(—, I) is exact.
[ Reminder: By Lemma 5.2.2 of the lecture notes Hompg(—, I') is always left exact. ]
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(3) Fix a projective resolution P, = M and an injective resolution N < I°. Consider the
commutative diagram

L d
0 — Homp(M,I") —— Homp(Py, I') —= Homp(Py,I') — -
/\5— 1,0 /\5070 /\51 0
0 d-1,0 0 do,o 0
0 —— Homp(M, ") : > Homp(P,,I') —— Homp(P,, 1) —> -+
80.-1 01,-1
Y
do,-1
O >HOH1R(P0,N) HHomR(Pl,N) H oo
0 0
where d,;, = — © poyy and §,, = i’ o — for all a,b = —1. Briefly justify that this is
indeed commutative, and that all columns and lines of the diagram which are not blue

are exact.
(4) Show that H°(Hompg(M, 1)) = H*(Homp(P., N)).
[ Hint: Show that their images inside Hompg(P,, IO) coincide. ]
(5) Show that H'(Hompg(M, %)) = H' (Homp(P., N)).
[Hint: Let C° := Homp(Py,I°) and C' = Homp(P,, I°) ®@ Homp(Py, I'), and let
A’ : ¢ 5 C' be the map sending = € ° to (doo(z),000(x)) € C'. Show that
the cohomology groups in question both embed into coker(Ao) and that their images
therein coincide. ]
[Remark: One can generalize the above results and prove that in fact Hi(HomR(M, I°)) =
H'(Hompg(P,,N)) for all i = 0, and thus the Ext-modules may also be computed by using
an injective resolution of the second module. To do so, one defines the modules C"™ :=
Do Homp(P,, I") and connecting maps A™ : C™ = €™ similar to A’, where one
replaces d0,;, by (—=1)%d,, to ensure A™" o A™ = 0. We thus obtain a complex C*, and

one can then prove that H'(Homp(M, 1)) and H'(Homp(P., N)) embed into H'(C*) with
equal image. ]

Proof. (1) By the Lemma, there exists an injective map it N o 1Y with I injective.
Denote I ' = N for convenience. For b = 1, let I’ be an injective module such that

there exists an injective map cokelr([b_2 LN [b_l) - [b, and let i"" be the composition

.b-2
" 5 coker(I7? 25 I"') o I°. Then it is straightforward to verify that

0 >Nz>IO z>]1

~

is an injective resolution.



(2)

Suppose that [ is injective, and let

0—sA—23yB L0

be an exact sequence of R-modules. To verify that

~
o

0 —— Homg(C, 1) —2% Homp(B, ) —%% Homp(A, ) —3 0

is exact, it suffices to verify that — o « is surjective, as Homp(—, ) is left exact by
Lemma 5.2.2. So let ¢ € Homp(A, I') be arbitrary. Then we have a diagram

0 sy A3 B

?

and thus by definition of I being injective, there exists ¢/ : B — I making the diagram
commute. This precisely means (— o a)(v) = ¢, so — o « is surjective.

Conversely, suppose that Homp(—, I) is exact, and suppose that we have a diagram
of R-modules

0 v X <Ly

Q

1.

Then as Homp(—, I) is exact, the map —o f : Homp(Y,I) » Homp(X, I) is surjective.
In particular, there exists h : Y — [ such that h o f = g, and thus a commutative
diagram

which proves that [ is injective.

Exactness of the non-blue rows follows as they are obtained from applying the exact
functor Homp(—, Ib) to the exact sequence P, - M — 0, and exactness of the non-blue
columns follows as they are obtained from applying the exact functor Homp(P,, =) to
the exact sequence 0 = N — I°. The diagram commutes as vertical arrows are given
by post-composition and horizontal arrows are given by pre-composition, and these two
operations commute by associativity of composition.

Let ¢ _1 € Ker(dy_1) be arbitrary. Then by commutativity we have dyg0dy _1(¢o-1) =
0, and so by exactness there exists ¢_; o € Homp(M, 1) such that d_10(¢-10) =
8o,-1(do_1). This shows that d_,o(H" (Hompg(P,,N))) € 8o_1(H’(Homg(M, 1.))),
and a completely symmetric argument yields also the reverse inclusion. We conclude
by injectivity of d_; o and g ;.

We employ the notations of the Hint. To construct a map Hl(HomR(P.,N)) -
coker(A"), we have to verify that if ¢1.-1 € im(dy 1), then (01 -1(¢p1-1),0) € im A
Let ¢ -1 € Hompg(Fy, N) be such that ¢; 1 = dy _1(¢o-1). By the commutativity and
exactness properties of the diagram, it is straightforward to verify that Ao(éo,_l (¢o.-1)) =
(61-1(¢1,-1),0), and thus the latter is in the image of A’. Therefore, the composition
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Ker(d; 1) = Homg(P;,N) < "' - coker(A) factors through H' (Homp(P., N)),
i.e. we obtain a map « : Hl(HomR(P., N)) - coker(AO) given by mapping the class
of ¢1_; € Ker(d; _;) to the class of (d;_1(¢1-1),0).

Now we verify that « is injective. To do so, suppose that ¢;_; € Ker(d;_;) is
such that (d;_1(¢1-1),0) € im(A"); we have to show that then ¢1.-1 € im(dy_1).
Let ¢go € Homp(P,, I°) be such that Ao(qﬁop) = (01-1(¢1,-1),0). In particular,
we have dgo(¢00) = 0, so by exactness there exists ¢o_; € Hompg(F, N') such that
P00 = 0p—1(¢o-1). Hence we obtain

51,—1(¢1,—1) = do,o(%,o) = do,o(50,—1(¢0,—1)) = 51,—1(d0,—1(¢0,—1))7

and so by injectivity of 6; _; it follows that ¢ -3 = dy _1(¢ -1). So ¢1 1 is in the image
of dy_1, and thus « is injective.

Now by a completely symmetrical argument, there exists and injective map

B : H'(Homp(M,I")) - coker(A"), mapping the class of ¢_11 € Ker(d_11) to the
class of (0,d_;1(¥)-11). So what is left to show is that the image of « is the same as
the image of 5. To this end, let ¢; _; € Ker(d; _;) be arbitrary. Then by commutativity
we have d; 0(01-1(¢1-1)) = 0, and so by exactness there exists ¢go € Homp (P, I°)
with d0,0(¢070) = (51’_1(¢17_1). Then notice that

d0,1(50,0(¢0,0)) = 51,0(%,0(%,0)) = 51,0(51,—1(¢1,—1)) =0

and thus by exactness there exists ¢_,; € Homp(M, [1) such that d_;,(¢-11) =
80.0(¢00). By a similar string of equations as above, we obtain d_; 5(d_;1(¢_11)) = 0,
which by injectivity of d_;, gives ¢_;; € Ker(d_;1). Now we verify that a(¢; -1 +
im(dy -1)) = B(=¢-11 +1im(d_10)). To this end, notice that

AO(%,O) = (do,o(¢0,o)750,0(¢0,0)) = (51,—1(%,—1)7d—1,1(¢—1,1)) = (51,—1(¢1,—1)70) - (07d—1,1(—¢—1,1))-

Thus the classes of (d;-1(¢1-1),0) and (0,d_; 1(—¢-11)) inside coker(A”) coincide,
which proves a(¢; -1 +im(dy—1)) = B(—=¢-11 +im(d_14)). We hence conclude that
ima € im 5. By a completely symmetrical argument we also obtain the reverse inclu-

sion, and thus we are done.
O



