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Rings and modules Exercises

Sheet 5 - Solutions

Exercise 1. For two short exact sequences

0 M1 M2 M3 0

and

0 N1 N2 N3 0

we say that there is a map between them if there exists morphisms fi � Mi � Ni, for
1 & i & 3 and a commuting diagram

0 M1 M2 M3 0

0 N1 N2 N3 0.

f1 f2 f3

Show that whenever there is a map between two short exact sequences, then there is an
induced map between long exact sequences of Ext-modules, making the suitable diagram
commute.

Proof. By applying the Horseshoe Lemma 5.5.5 in the lecture notes there exists projective
resolutions P

Mi
a of Mi and P

Ni
a of Ni for i � 1, 2, 3 and a commuting three dimensional

diagram:

0 P
M1
a P

M2
a P

M3
a 0

0 M1 M2 M3 0

0 P
N1
a P

N2
a P

N3
a 0

0 N1 N2 N3 0

By Theorem 5.4.20 in the Lecture notes we can extend this diagram, by extending fi �

Mi � Ni to a (unique up to homotopy) morphism of chain complexes fa � P
Mi
a � P

Ni
a for

1
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i � 1, 2, 3. Therefore we have a three dimensional diagram commuting up to homotopy:

0 P
M1
a P

M2
a P

M3
a 0

0 M1 M2 M3 0

0 P
N1
a P

N2
a P

N3
a 0

0 N1 N2 N3 0

Let K be some R-module, we can apply HomR��, K� to the above diagram, then we get a
diagram which commutes up to homotopy by Remark 5.4.15 and with the backside of the
diagram still having exact rows as explained in (5.6.i) in the proof of Theorem 5.5.6. If we

take cohomology we get an induced morphism fi,j � Ext
j�Mi, K� � Ext

i�Ni, K� for every
j ' 0 and i � 1, 2, 3 which commutes with the horizontal morphisms in the diagram by
Proposition 5.4.17. We want to show that these morphisms commute with the connecting
homomorphism (denoted δM and δN respectively) appearing in the long exact sequence Prop
4.5.1, i.e., from what has been said above we have a diagram :

Ext
i�1�M1, K� Ext

i�M3, K� Ext
i�M2, K� Ext

i�M1, K�

Ext
i�1�N1, K� Ext

i�N3, K� Ext
i�N2, K� Ext

i�N1, K�

δM

δN

,

where only the commutativity of the �rst square needs to be checked. I.e we are checking
that the long exact sequence of cohomology (Proposition 5.5.1) is functorial. To this end
we revisit the set up of Proposition 5.5.1. We use the notation in Proposition 5.5.1 to
make it easier for the reader. To this end suppose we have a commutative diagram between
cocomplexes, with exact rows:

0 Fa Ga Ha 0

0 F
¬

a G
¬

a H
¬

a 0

ΦF

αa βa

ΦG ΦH

α
¬

a β
¬

a

.

Where the structure morphism of the complexes are denoted fi, gi, hi and f
¬

i, g
¬

i, h
¬

i respec-
tively (as in Proposition 4.5.1). We want to check that the morphisms δi � H

i�Ha� �
H

i�1�Fa�, δ¬i � H
i�H ¬

a� � H
i�1�F ¬

a� constructed in Proposition 4.5.1 commutes with the

morphisms induced by ΦF ,ΦH . To this end let x " H
i�Ha�, and let x̄ " Hi be a lift of x.

Let y " Gi be a preimage under βi of x then Φ
i
G�y� " G

¬

i is a preimage under β
¬

i of Φ
i
H�x̄�.
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The situation is illustrated by the following diagram:

0 Fi Gi Hi 0

0 F
¬

i G
¬

i H
¬

i 0

0 Fi�1 Gi�1 Hi�1 0

0 F
¬

i�1 G
¬

i�1 H
¬

i�1 0

Φ
i
F

αi

Φ
i
G

βi

Φ
i
H

α
¬

i β
¬

i

Φ
i�1
F Φ

i�1
G Φ

i�1
H

α
¬

i�1 β
¬

i�1

Let now z " Fi�1 be such that αi�1�z� � gi�y� (so that δi�x� is the class of z inside

H
i�1�Fa�). It is su�cient to show that α

¬

i�1�Φi�1
F �z�� � g

¬

i�Φi
G�y��. This follows by some

easy diagram chasing as follow: We have α
¬

i�1�Φi�1
F �z�� � Φ

i�1
G �αi�1�z��, but by de�nition

we have αi�1�z� � gi�y�. By the commutativity of the diagram Φ
i�1
G �gi�y�� � g

¬

i�Φi
G�y��.

Let now x
¬

" H
i�H ¬

a� be the image of x under the morphism induced by ΦH . As α
¬

i�1�Φi�1
F �z�� �

g
¬

i�Φi
G�y�� and Φ

i
G�y� is a preimage under β

¬

i of Φ
i
H�x̄�, which is a lift of x

¬

to H
¬

i, we obtain

that δ
¬

i�x¬� is equal to the class of Φ
i�1
F �z� inside H i�1�F ¬

a�. The latter is by de�nition equal
to the image of δi�x� under the morphism induced by ΦF , which concludes the proof. □

Exercise 2. In this exercise we prove the the two 4-lemmas. To this end, suppose that we
have a commuting diagram with exact rows:

A B C D

A
¬

B
¬

C
¬

D
¬

f1

a b

f2

c

f3

d

f
¬

1 f
¬

2 f
¬

3

(1) Show that if a and c are surjective and d is injective, then b is surjective.
(2) Show that if b and d are injective and a is surjective, then c is injective

Proof. (1) Let β
¬

" B
¬

, we want to show that there exists β " B such that b�β� � β
¬

. To this

end, since c is surjective there exists γ " C such that c�γ� � f
¬

2�β ¬�. By commutativity
we get df3�γ� � f

¬

3c�γ� � f
¬

3f
¬

2�β ¬�. By exactness of the rows f
¬

3f
¬

2�β ¬� � 0 and hence
f3�γ� " ker�d�. By assumption ker�d� � 0 and hence (using exactness of the rows)

γ " im�f2�. Let β1 " B be such that f2�β1� � γ. We have f
¬

2�b�β1� � β
¬� � 0,

by commutativity and de�nition of β1 and γ. By exactness of the lower row there
therefore exists α

¬

" A
¬

such that f
¬

1�α¬� � b�β1� � β
¬

. By assumption a is surjective,
so let α " A be such that a�α� � α

¬

. We have bf1�α� � b�β1� � β
¬

by commutativity.
Let β � β1 � f1�α�, then b�β� � b�β� � b�β� � β

¬

� β
¬

. We conclude that b is an
epimorphism.

(2) Let γ " C be such that c�γ� � 0; we want to show that γ � 0. By commutativity

we have df3�γ� � f
¬

3c�γ� � 0, and by injectivity of d it follows that f3�γ� � 0. By
exactness of the rows we get γ " im�f2�, so let β " B be such that f2�β� � γ. Now
again by commutativity we have f

¬

2b�β� � cf2�β� � 0 and thus by exactness of the
rows there exists α

¬

" A
¬

such that f
¬

1�α¬� � b�β�. Then by surjectivity of a we can also
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take α " A with a�α� � α
¬

. Thus we get by commutativity bf1�α� � f
¬

1a�α� � b�β�,
and by injectivity of b it follows that f1�α� � β. But thus γ � f2�β� � f2f1�α�, which
by exactness gives γ � 0. Hence γ is a monomorphism.

□

Exercise 3.
1

(1) Set k � Fp and G � Z©pZ. Find all the submodules (i.e. ideals) of R � k�G�.
�Hint: To understand Fp�ZªpZ� in terms of more common rings, it might be a good

idea to look for ring morphisms Fp�x� � Fp�ZªpZ� and investigate both kernel and
image.�

(2) For p � 2, let x denote a generator of G and set M � �x � 1� N k�G�. Compute

Ext
i
R�M,M� for all i ' 0.

Proof. (1) We de�ne a k-algebra morphism (i.e. a ring morphism that is also k-linear)
Φ � k�x� � k�G� by mapping x ( δg, where δa is de�ned as in the hint and g " G is
a generator (such a morphism always exists by the universal property of k�x�). Then
notice that

Φ�xp
� 1� � �δg�p � 1 � δgp � 1 � δeG � 1 � 0

and thus �xp
�1� N KerΦ. Thus we obtain a k-algebra map ϕ � k�x�«�xp

� 1�� k�G�.
Now as the image contains rδgix0&i$p which is a k-basis of k�G�, we get that ϕ is a
surjective map of k-vector spaces of dimension p. Hence ϕ is an isomorphism.

Now the ideals of k�x�«�xp
� 1� are in one-to-one correspondence with the ideals I of

k�x� containing x
p
� 1. Notice that x

p
� 1 � �x� 1�p as we are in characteristic p, and

thus as k�x� is a PID we obtain that the ideals of k�x� containing x
p
� 1 are exactly

Ii � ��x � 1�i� for 0 & i & p. Translating this to k�G�, we obtain that the ideals of

k�G� are precisely Φ�Ii� � ��δg � 1�i� for 0 & i & p.
(2) Denote R � k�G�. The map R �M mapping r " R to r�x�1� is clearly surjective. To

compute the kernel, suppose that r�x � 1� � 0. By the isomorphism ϕ of the previous

point, we can view this as an equation inside k�x�«�x2
� 1�. As x2

� 1 � �x� 1�2 � 0,
we see that the solutions to the equation are precisely the multiples of x � 1. That is,
the kernel of R�M is again M . Hence we get a free resolution

� � �� R � R � R �M � 0

where all the arrows are just multiplication by x�1. Dropping theM from the sequence
and applying HomR��,M�, and under the identi�cation HomR�R,M� 	M , we obtain
the sequence

� � ��M �M �M � 0

where again every map is multiplication by x�1. But as �x�1�2 � 0 in M , every map

is equal to 0, and thus all cohomology groups are equal to M . Thus Ext
i
R�M,M� �M

for all i ' 0.
□

1as modules over k�G� correspond to representations of G over k, we see that something is really wrong

for Fp�ZªpZ� compared to the case of exercise 3.
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Exercise 4. In this exercise we de�ne injective modules and prove Baer's criterion. Let R
be a (not necessarily commutative) ring; any R-module and any R-morphism appearing in
this exercise will be a left R-module resp. a morphism of left R-modules.
We say that an R-module Q is injective if it satis�es the following universal property:
Whenever we have an injective R-morphism f � X 0 Y and an R-morphism g � X � Q,
then there exists an R-morphism h � Y � Q making the following diagram commute:

0 X Y

Q

g

f

h

We will prove the following:

Theorem (Baer's Criterion). Suppose that the left R-module Q has the property that if I is

any left ideal of R and f � I � Q is an R-morphism, there exists an R-morphism F � R � Q
extending f . Then Q is an injective R-module.

We will prove Baer's criterion in several steps. Assume that the R-module Q satis�es
Baer's criterion.

(1) Let X, Y be R-modules, and assume that Y is cyclic (generated by b " Y ). Let
f � X 0 Y be an injective R-morphism. Show that for every R-morphism g � X � Q,
there exists an R-morphism h � Y � Q making the appropriate diagram commute.
�Hint: Identify X with a submodule of Y and consider the subset I of R de�ned by
I � rr " R � rb " Xx. �

(2) Let X, Y be left R-modules with an injective R-morphism f � X 0 Y (we identify
X with its image under f). Let b " Y be arbitrary. With a similar approach as in
the previous point, prove that any R-morphism g � X � Q can be extended to an
R-morphism h � X �Rb� Q making the appropriate diagram commute.

(3) Use Zorn's Lemma to conclude the proof.

Axiom 1 (Zorn's Lemma / Axiom of Choice). If �P ,&� is a partially ordered set
with the property that every totally ordered subset (often called a chain) has an upper
bound, then there exists a maximal M " P . (that is, for N " P , we have M ©& N)

�Hint: Try to think of what it means for one partial extension of g � X � Q to be
smaller than another. �

Proof. (1) Let I � rr " R¶rb " Xx where we consider Ra N Rb via f ; it is straightforward
to check that this is an ideal. Then the map l � I � Q de�ned by l�r� � g�rb� is a
homomorphism, so we can extend to L � R � Q, by the hypothesis. De�ne h � Rb� Q
by h�rb� � L�r�. This is well-de�ned because if rb � r

¬

b, then r � r
¬

" I and thus
L�r�r

¬� � g��r�r
¬�b� � 0. Also, it is straightforward to check that h is an R-morphism

extending g, so we are done.
(2) As above, let I � rr " R¶rb " Xx and extend l � I � Q de�ned by l�r� � g�rb� to

L � R � Q. Then we can de�ne h � X �Rb� Q by h�x� rb� � g�x��L�r�. To show
that this is well-de�ned, assume that x � rb � x

¬

� r
¬

b. Then �r � r
¬�b � x

¬

� x " X
and thus r � r

¬

" I, which implies

g�x � x
¬� � L�r � r

¬� � g�x � x
¬� � g�r�b � b

¬�� � 0.
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Furthermore, it is straightforward to check that h is an R-morphism extending g, so
we are done.

(3) Say that X L Y and g � X � Q is a homomorphism. Consider the set

P � r�X ¬

, g
¬� ¶ X N X

¬

N Y, g
¬

� X
¬

� Y, g¶X � gx.
We can de�ne a partial order & on P as follows: �X ¬

, g
¬� & �X ¬¬

, g
¬¬� if and only if

X
¬

N X
¬¬

and g
¬¬¶¬X � g

¬

. Then if r�X ¬

i, g
¬

i�xi"Ω is a totally ordered subset indexed by
some set Ω, we can form <i"Ωfi � �i"Ω Ai � Q, which then is an upper bound to the

chain. Hence there exists a maximal h � X
¬

� Q, by Zorn's Lemma.
Now if we have some b " Y �X

¬

, we can extend h to X
¬

� Rb, by the previous point.
This contradicts the maximality of h, so we must have X

¬

� Y , and we are done.
□

Exercise 5. Use Baer's Criterion to show that Q is an injective Z-module.

Proof. Let I be an ideal of Z, then I � nZ some n " Z. Let g � nZ � Q be a group
homomorphism. If n � 0 then the zero map from Z to Q extends g. Otherwise suppose
g�n� � a

b
. We can extend f by h � Z� Q de�ned by h�k� � ka

nb
for all k. □


