EPFL - Fall 2024 Domenico Valloni
Rings and modules Exercises
Sheet 5 - Solutions

Exercise 1. For two short exact sequences

0 —— M, > M,

~
=
~

jen)

and

we say that there is a map between them if there exists morphisms f; : M; — N,, for
1 =4 < 3 and a commuting diagram

0 > M, > M, > M, > 0
\Lfl \sz \Lfs
0 > N, > N, > N > 0.

Show that whenever there is a map between two short exact sequences, then there is an
induced map between long exact sequences of Ext-modules, making the suitable diagram
commute.

Proof. By applying the Horseshoe Lemma 5.5.5 in the lecture notes there exists projective
resolutions P.]v li of M; and P.N “of N; for i = 1,2,3 and a commuting three dimensional
diagram:

M;

0—s P — P P

0 — M, > M, > M; > 0
— P ——|—— " l » P — 0

By Theorem 5.4.20 in the Lecture notes we can extend this diagram, by extending f; :

M; = N; to a (unique up to homotopy) morphism of chain complexes f, : PM o PN for
1
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1 =1,2,3. Therefore we have a three dimensional diagram commuting up to homotopy:

0—>P.Ml—>P.MQ—>P,M3—>0

/

0 > M, l > M, l > M, >
— P — | — pF l s P — 0
0— N > N, > Ny > 0

Let K be some R-module, we can apply Homp(—, K') to the above diagram, then we get a
diagram which commutes up to homotopy by Remark 5.4.15 and with the backside of the
diagram still having exact rows as explained in (5.6.i) in the proof of Theorem 5.5.6. If we
take cohomology we get an induced morphism f; ; : Ext’(M;, K) — Ext'(N;, K') for every
J 2 0 and 7 = 1,2,3 which commutes with the horizontal morphisms in the diagram by
Proposition 5.4.17. We want to show that these morphisms commute with the connecting
homomorphism (denoted §,; and Jy respectively) appearing in the long exact sequence Prop
4.5.1, i.e., from what has been said above we have a diagram :

Ext'™ (M, K) =2 Ext'(My, K) — Ext'(My, K) — Ext'(M,, K)

l l l Lo

Bxt'™ (Ny, K) =2 Bxt!(Ny, K) — Bxt'(Ny, K) — Ext'(Ny, K)

where only the commutativity of the first square needs to be checked. I.e we are checking
that the long exact sequence of cohomology (Proposition 5.5.1) is functorial. To this end
we revisit the set up of Proposition 5.5.1. We use the notation in Proposition 5.5.1 to
make it easier for the reader. To this end suppose we have a commutative diagram between
cocomplexes, with exact rows:

0 — F. -5 G, -3 H. — 0
e e e
0— Fi -5 6L L bl —— 0

Where the structure morphism of the complexes are denoted f;, g;, h; and f,»' , g;, h; respec-
tively (as in Proposition 4.5.1). We want to check that the morphisms ¢; : H'(H,) —
H™*Y(F,), 6 : H(H.) » H™'(F!) constructed in Proposition 4.5.1 commutes with the
morphisms induced by ®p, ®5. To this end let x € H'(H,), and let T € H; be a lift of z.
Let y € G; be a preimage under j3; of = then ®¢(y) € Gj is a preimage under §; of @} (z).



The situation is illustrated by the following diagram:

oy Bi
> G, >

H;
vl v
0 — F l > G l > H, J

\ \
7 L+l : 4 G'i+1 ; 4 Hi+1 — 0
i+1 q)7,+1 d +
G

s
—

i

o I Bi
N i+1 N i+1
0 4 E+1 4 Gi+1

> Hiv 0
Let now z € Fj,;; be such that a;;1(2) = gi(y) (so that 6;(x) is the class of 2 inside
H™'(F,)). It is sufficient to show that aj,, (P54 (2)) = ¢i(®4(y)). This follows by some
easy diagram chasing as follow: We have aj,, (®% ' (2)) = @Hl(aﬁl( )), but by definition
we have aHl(z) = gl(y) By the commutativity of the diagram ®4 ' (g;(y)) = gZ(CDG(y))
Let now z' € H' (H ) be the image of # under the morphism induced by CDH As aHl((I) 1(2)) =
gl(tbG(y)) and @ (y) is a preimage under Bl of @ (z), which is a lift of 2' to Hj, we obtain
that &,(2') is equal to the class of @' (z) inside H*'(F1). The latter is by definition equal
to the image of §,(x) under the morphism induced by @, which concludes the proof. [

Exercise 2. In this exercise we prove the the two 4-lemmas. To this end, suppose that we
have a commuting diagram with exact rows:

ALl p s oLy p

Lol

(1) Show that if a and ¢ are surjective and d is injective, then b is surjective.
(2) Show that if b and d are injective and a is surjective, then c is injective

Proof. (1) Let 8 € B', we want to show that there exists 5 € B such that b(8) = 5. To this
end, since ¢ is surjective there exists v € C such that ¢(y) = fo(3'). By commutativity
we get dfs(7) = fse(y) = fafs(8'). By exactness of the rows fsfs(8') = 0 and hence
f3(7) € ker(d). By assumption ker(d) = 0 and hence (using exactness of the rows)
v € im(f,). Let B, € B be such that f5(8;) = 7. We have fo(b(5;) — ) = 0,
by commutativity and definition of 5; and . By exactness of the lower row there
therefore exists o' € A’ such that fi(a') = b(3,) — 8. By assumption a is surjective,
so let a € A be such that a(a) = o'. We have bfi(a) = b(3,) = 8 by commutativity.
Let 8 = B — fi(a), then b(B8) = b(B8) = b(B) + 8 = . We conclude that b is an
epimorphism.

(2) Let v € C be such that ¢(y) = 0; we want to show that v = 0. By commutativity
we have df;(7) = fsc(y) = 0, and by injectivity of d it follows that f;(y) = 0. By
exactness of the rows we get v € im(f3), so let 8 € B be such that f5(3) = v. Now
again by commutativity we have f,b(3) = ¢f2(8) = 0 and thus by exactness of the
rows there exists o' € A' such that fi(a') = b(8). Then by surjectivity of a we can also



take o € A with a(a) = o'. Thus we get by commutativity bf; (o) = fia(e) = b(S),
and by injectivity of b it follows that f;(«) = 8. But thus v = f5(3) = fof1(«), which

by exactness gives v = 0. Hence 7 is a monomorphism.
OJ

Exercise 3. !

(1)

(2)

Set k =T, and G = Z/pZ. Find all the submodules (i.e. ideals) of R = k[G].

[ Hint: To understand FP[Z/pz] in terms of more common rings, it might be a good
idea to look for ring morphisms F,[2] — F,[Z/ pZ] and investigate both kernel and
image. |

For p = 2, let z denote a generator of G and set M = (z + 1) € k[G]. Compute
Extly (M, M) for all i = 0.

Proof. (1) We define a k-algebra morphism (i.e. a ring morphism that is also k-linear)

1

P : k[z] = k[G] by mapping x = d,, where d, is defined as in the hint and g € G is
a generator (such a morphism always exists by the universal property of k[x]). Then
notice that

P(2"-1)=(6,)"-1=6p-1=6,,-1=0

and thus (2" —1) € Ker ®. Thus we obtain a k-algebra map ¢ : k:[x]/(xp - 1) = k[G].
Now as the image contains {d,i }o<ic, Which is a k-basis of k[G], we get that ¢ is a
surjective map of k-vector spaces of dimension p. Hence ¢ is an isomorphism.

Now the ideals of /f[fﬂ]/(zp — 1) are in one-to-one correspondence with the ideals I of
k[2] containing 2” — 1. Notice that 2" — 1 = (z — 1)” as we are in characteristic p, and
thus as k[z] is a PID we obtain that the ideals of k[z] containing z” — 1 are exactly
I, = ((x = 1)") for 0 < i < p. Translating this to k[G], we obtain that the ideals of
k[G] are precisely ®(1;) = ((6, — 1)") for 0 < i < p.

Denote R = k[G]. The map R — M mapping r € R to r(xz+1) is clearly surjective. To
compute the kernel, suppose that r(z + 1) = 0. By the isomorphism ¢ of the previous
point, we can view this as an equation inside /<?|:$]/(g,;2 —1). As P=1=(z+1)° =0,
we see that the solutions to the equation are precisely the multiples of x + 1. That is,
the kernel of R — M is again M. Hence we get a free resolution

> R—>R—>R—M-»0

where all the arrows are just multiplication by z+1. Dropping the M from the sequence
and applying Hompg(—, M), and under the identification Hompg(R, M) = M, we obtain
the sequence

ce M e Me—M<0

where again every map is multiplication by x + 1. But as (z + 1)2 = 0in M, every map
is equal to 0, and thus all cohomology groups are equal to M. Thus ExtR(M, M) = M
for all + = 0.

O

as modules over k[ G] correspond to representations of G over k, we see that something is really wrong
for FP[Z/pz] compared to the case of exercise 3.
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Exercise 4. In this exercise we define injective modules and prove Baer’s criterion. Let R
be a (not necessarily commutative) ring; any R-module and any R-morphism appearing in
this exercise will be a left R-module resp. a morphism of left R-modules.

We say that an R-module () is injective if it satisfies the following universal property:
Whenever we have an injective R-morphism f : X < Y and an R-morphism g : X — (),
then there exists an R-morphism h : Y — ) making the following diagram commute:

We will prove the following:

Theorem (Baer’s Criterion). Suppose that the left R-module Q) has the property that if I is
any left ideal of R and f : I — Q is an R-morphism, there exists an R-morphism F : R — ()
extending f. Then Q) is an injective R-module.

We will prove Baer’s criterion in several steps. Assume that the R-module () satisfies
Baer’s criterion.

(1)

Let X,Y be R-modules, and assume that Y is cyclic (generated by b € Y). Let
f + X =Y be an injective R-morphism. Show that for every R-morphism g : X — @),
there exists an R-morphism h : Y — () making the appropriate diagram commute.

[ Hint: Identify X with a submodule of Y and consider the subset I of R defined by
I={reR:rbe X}. ]

Let X,Y be left R-modules with an injective R-morphism f : X < Y (we identify
X with its image under f). Let b € Y be arbitrary. With a similar approach as in
the previous point, prove that any R-morphism g : X — @ can be extended to an
R-morphism h : X + Rb —» () making the appropriate diagram commute.

Use Zorn’s Lemma to conclude the proof.

Axiom 1 (Zorn’s Lemma / Axiom of Choice). If (P, <) is a partially ordered set
with the property that every totally ordered subset (often called a chain) has an upper
bound, then there exists a maximal M € P. (that is, for N € P, we have M £ N)

[ Hint: Try to think of what it means for one partial extension of g : X — @ to be
smaller than another. ]

Proof. (1) Let I = {r € R|rb € X} where we consider Ra € Rb via f; it is straightforward

to check that this is an ideal. Then the map [ : I —» @ defined by I(r) = g(rb) is a
homomorphism, so we can extend to L : R = @), by the hypothesis. Define h : Rb — @)
by h(rb) = L(r). This is well-defined because if rb = r'b, then r — ' € I and thus
L(r=r") = g((r=r")b) = 0. Also, it is straightforward to check that A is an R-morphism
extending g, so we are done.

As above, let I = {r € R|rb € X} and extend [ : I — Q defined by I(r) = g(rd) to
L: R — Q. Then we can define h : X + Rb —» @ by h(x +rb) = g(x) + L(r). To show
that this is well-defined, assume that « + b = ' +r'b. Then (r—r')b=2'—2 € X
and thus r — 7' € I, which implies

g(x — x’) + L(r — r') =g(x — ac') + g(r(b-— b')) = 0.



Furthermore, it is straightforward to check that h is an R-morphism extending g, so
we are done.
(3) Say that X C Y and ¢ : X — @ is a homomorphism. Consider the set

P={(X,¢) | XcX cV, g: X' >V, glx =g}

We can define a partial order < on P as follows: (X', ¢') < (X", ¢") if and only if
X'c X" and ¢"|'y = ¢'. Then if {(X], ¢;)}ieq is a totally ordered subset indexed by
some set €2, we can form U;eqf; © UiEQ A; = @, which then is an upper bound to the
chain. Hence there exists a maximal h : X' - @, by Zorn’s Lemma.

Now if we have some b € Y — X', we can extend h to X'+ Rb, by the previous point.

This contradicts the maximality of h, so we must have X = Y, and we are done.
O

Exercise 5. Use Baer’s Criterion to show that Q is an injective Z-module.

Proof. Let I be an ideal of Z, then I = nZ some n € Z. Let g : nZ — Q be a group
homomorphism. If n = 0 then the zero map from Z to Q extends g. Otherwise suppose
g(n) = 3. We can extend f by h :Z — Q defined by h(k) = % for all k. O



