EPFL - Fall 2024 Domenico Valloni
Rings and modules Exercises
Sheet 3 - Solutions

Exercise 1. Computing a presentation of an R module M means explicitly determining an
exact sequence of the form R® L R® =5 M — 0. Do the following computations.
(1) Compute a presentation of the Z-module

M :=7(2,9) + Z(4,3) + Z(6,8) € Z & Z.
(2) Let R = Matgyo(Z) be the ring of 2 X 2-matrices over Z. Compute a presentation of

the left R-module
L 2 0 0 3
e enll Yen

Proof. (1) We define a surjective morphism € : Z° —» M by ¢, = (2,9), ey —~ (4,3),
es — (6,8). Then we calculate generators of the kernel:

(aq,as,as) is mapped to zero if and only if the following two equations are satisfied:

2aq + 4ay + 6a3 =0

9@1 + 3(12 + 8@3 =0
From the first equation we find a; = —2ay — 3az. Substituing for a; in the second
equation gives us 15a, = —19a3. This implies that a, = —19¢, a3 = 15t for t € Z. This
gives that a; = —2(—19t) — 3(15t) = —7t. We conclude that a presentation is given by

Z-7'5M-0
where the first map is n : ¢t — (=7t, —19¢, 15¢t)
(2) We define a surjective morphism ¢ : R> = M by

(20 (03
@i l0 02712 0

and we are interested in calculating generators of the kernel. T.e., we calculate the
solution set of the matrix equation

a b\(2 O a503_2a+253a_0
¢ dj\o o)T\y s/\2 o/ \2c+20 377

Hence the kernel consits of the elements ((CCL Z) , (?; ?)) such that a = -3, ¢ = =90,

a =7 =0. Le., the elements of the form

a b\ (0 —a
c d)’\0 =c/|"
Thus, the mapn: R — R* defined by
a b ([ b\{1 0\ [a b)({0 -1
c d c dj\0 1/’\c dJ\0 O
gives a presentation R® 5 R® 5 M — 0 of M.
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Exercise 2. Do the following:
(1) Calculate the Smith normal form of the following matrix over Z.

1 9 1
-2 -6 0
2 -8 2
-1 1 5

(2) (i) Find a direct sum of cyclic Z-modules isomorphic to the Z-module M with gen-
erators e;, ey, €3, €4 and relations

61—2€2+2€3—€4=0
961—662—8€3+€4=0
e1 + 2e3 + 5ey =0

|Hint/Remark: By definition, M is the quotient of the free Z-module on 4 genera-
tors @?:1 Ze; by the submodule generated by e; —2eq+2e3—¢4, 9¢; —6ey —8es+¢4
and e; +2e35+ 5ey. Notice that in the quotient, ey, . .., e, then satisfy exactly these
relations. |

(ii) Explicitly give 'nice’ generators of M, in terms of the original generators ey, ey, €3, 4.
Here, fi,..., f, are 'nice’ generators if the relations they satisfy are generated by
relations of the form m,f; = 0, where my,..., m, € Z are integers.

Proof. (1) We follow the algorithm for using row and column operations to produce the
Smith normal form of a matrix.

Step 1a: Ensure that the (1, 1)th entry is the principal generator for the ideal gen-
erated by the entries of the first row and column. In this case it is already true, so we
move on.

Step 1b: Use that property to remove all other entries in the first column by adding
a multiple of the first row to subsequent rows. Then remove all other entries in the
first row by adding a multiple of the first column to later columns:

1 9 1 1 9 1 1 0 0
—2 =6 0 0 12 2 0 12 2
2 82 |710 -2601{("]0 =26 0
-1 1 5 0 10 6 0 10 6

Step 2a: Ensure the (2, 2)th entry is the principal generator for the ideal generated by
the second row and column. In this case we must swap the second and third columns.

1 0 0 10 0
0 12 2 02 12
0 -26 0|00 —26
0 10 6 06 10

Step 2b: Remove other non-zero entries in the second row and column.

10 0 10 0 10 0
0 2 12 N 0 2 12 . 02 0
0 0 -26 0 0 -26 0 0 -26
0 6 10 0 0 -26 0 0 -26



(2)

Step 3: Tidy up the resulting matrix to obtain Smith normal form:

(i)

10 0 10 0 10 0
02 0 N 02 0 N 02 0
0 0 —26 0 0 —26 0 0 26
0 0 —26 00 O 00 O
In terms of the generators eq,...,e, of M given in the exercise the surjection

7' - M defined by these generators has kernel K spanned by

1 9 1
-2 -6 0
9 , _3 and 9
-1 1 5

So K is the image of the linear map YARSY/ given by the matrix

1 9 1
-2 -6 0
2 -8 2
-1 1 5

As discussed in section 4.1 of the lecture notes, multiplying a matrix to the left
and right with invertible matrices doesn’t change the isomorphism type of the
cokernel. Hence M is isomorphic to the cokernel of the Smith normal form of the
above matrix, i.e.

OO O
S O N O
[\

(@)

=0
—r—
The cokernel of this matrix is Z/Z ® Z/QZ o Z/QGZ ® 7, so we obtain

MzZ[og e L]z e L.

We want to find the elements of M which correspond to the canonical generators
of Z/QZ ® Z/QﬁZ ® Z (i.e. the vectors with precisely one component equal to 1
and 0’s everywhere else). Write

1 9 1 1 0 0
-2 -6 0 02 0
A= 2 =8 2| D= 0 0 26
-1 1 5 00 0

We have found invertible matrices P € GL,(Z) and Q € GL3(Z) such that
PAQ =D



We can rephrase this as a commutative diagram

Z3 fa \ Z4

o] I

3 4
ZTZ

where fp denotes the linear map associated to the matrix B. We then have that
fp induces an isomorphism

fp+ M = coker(f4) = coker(fp)

However, it is clear that a nice basis for coker(fp) is given by the classes of
(ea,...,€e4), S0 a nice basis for M = coker(f4) is given by the classes of

(fp-1(e2), fp-1(es), fr1(ed))

Thus, we simply have to compute p! (i.e. the inverse of the operations we did
on the rows) and take the last three columns of this matrix as this nice basis.
Thus we have to find P, and for this we need to keep track of the line operations
we performed on A to find the Smith normal form. By revisiting the solution of
(1), this gives

10 0 0 1 0 00 1 000

= 01 0 0 01 00712 100

100 1 0 0 0 10 -2 010

00 -11 0 -3 01 1 001

SO

1 000 1 000 1 000 1 000
Pl -2 100 0100 0100 _(-2100
12 010 0010 0010l |2 010}
-1 0 0 1 0 3 01 0011 -1 311

Thus, a nice basis is given by the images of f| := ey +3ey, f5 := es+e, and f3 = ey.
In M, they satisfy the relations 2f; = 0, 26f, = 0 (and f; satifies no non-trivial
relation).

O

Exercise 3. Let R = Q[z]. Find a direct sum of cyclic R-modules isomorphic to the
R-module with generators e;, e; and relations
’e; + (z + 1)ey = 0
(2°+ 22+ 1)e; + (2" = 1)ey = 0

Proof. As before, we get a homomorphism R*> > M with kernel K , which is given by the
image of the map R* - R? defined by the matrix

SL’2 x3+21:+1
r+1 2 -1
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We put this into Smith normal form. We have that the ideal (z>, 2 +1) = 1 and 1 x 2° +
(1 =2)(1+ z) = 1. The first step in the algorithm therefore tells us to multiply from the

left by the matrix
1 1-z
—(z+1) 2 )

1 1-x R A Y | (1 3z + 2
—(z+1) 2° J\z+1 -1 "0 (3" + 3z +2° +1)

By an elementary column operation this gives:

(é —(x0+ 1)3)

So this means that there is a different set of generators f; and f, of M that satisfies the
relations: f; =0 and (z + 1)3f2 = 0, hence:

M= Qlz]/ (3 41y

We get

O

Exercise 4. Give an example of an infinitely generated Z-module which is not an (infinite)
direct sum of copies of Z and Z/nZ for various choices of n.

Proof. We claim that an example is given by Q as a Z-module. Indeed, assume for sake
the of contradiction that Q = YARK: G}ZZ/nZ for some set [ and some n; = 2. Since Q is
torsion-free we see that the sum of Z/n; is empty. To prove that Q is not a free module,
we observe that every two cyclic (isomorphic to Z) submodules of @ intersect. Indeed, let
pi1/q and py/qe be two rational number belonging to two different cyclic modules. Then
PiD2 = 1P - P1/q = Pige - P2/ @ 1s an element in the intersection. Therefore, if Q is free,
then it must be generated by a single element, i.e. Q = Z, which of course is a contradiction.

An other way to show that Q # 7% for any I, is to notice that the endomorphism

(-2) : a > 2a is surjective on Q, but not on Z*'.
0]

2 x

0 0

(1) Show that A is not equivalent to a diagonal matrix. The equivalence that we consider
here is the one introduced in the lectures, that is, up to left or right multiplication by
an invertible matrix.

(2) Show that the cokernel of the map A : R®> » R®” is isomorphic to a direct sum of
cyclic R-modules, but is not isomorphic to an B-module of the form R®" @ @le R / (a;)
where a,,...,a, € R\ {0}.

(3) Show that (2,z) is not isomorphic to a direct sum of cyclic R-modules.

Exercise 5. Let R = Z[x] and consider the matrix A = ( ) € Matgyo(R).

Proof. (1) We will show that A is not equivalent to a diagonal matrix. Suppose that

A= (>(\)1 )(\) ) is equivalent to A. Then rank(A') = rank(A) = 1 and therefore \; = 0
2



)
1 0) %
may assume that Ay = 0 (and denote A\ = A\; from now on). Then there exists invertible

matrices S = | °1 °12) and T = b o such that SA = A'T, i.e.
S91  So9 to1 tao

2311 IS11 _ )\tll )\t12

2821 IS91 h 0 0
Since Z[x] is a UFD, the equality 2s,; = At;; and xs;; = My, implies that there exists
some t' € Z[z] such that ¢;; = 2t' and ¢, = zt'. Since the units of Z[z] are precisely
il, we obtain +1 = det(T) = t11t22 - t12t21 = 2t,t22 - .flft,tgl. This anhes that the ideal

(2, ) contains 1, a contradiction.
(2) Let M be the cokernel of A : Z[z]* — Z[z]>. It is straightforward to see that

M = Z[ﬂf]/(z’x) @® Z[z], which is a direct sum of cyclic R-modules. Suppose by
contradiction that there exist a4, ..., a, € Z[z] \ {0} and m = 0 such that

2/ (2,2) @ ZLe] = (Z2[2])*" ® (D) Zla]/ (ay).

Then the torsion-submodules of the LHS and RHS must be isomorphic, i.e.

2l (2,2) = GB 2L}/ (a),

But thus the annihilators of the LHS and the RHS must agree. For the LHS the
annihilator is (2, z), while for the RHS it is (-, (a;). But as Z[z] is a UFD, the latter
is a principal ideal (generated by the least common multiple of the a;’s), while the
former isn’t principal. This is the desired contradiction.

for + = 1 or ¢« = 2. By multiplying from the left and the right by the matrix (0

(3) Suppose by contradiction that ¢ : (2, x) = D,c; M, is an isomorphism, where {M;};e;
is a family of cyclic R-modules. For all i € I, let f; € (2,2) be such that ¢(f;) is

a generator of M;. Then f;f; is in the intersection o (M) n go_l(Mj), while the

intersection M; N M; inside .-, M; is equal to 0. Therefore all but one of the M;’s
must be trivial. But then (2, ) is principal, which is a contradiction as well.
O

Exercise 6. Show that an exact sequence
0 > M > N
of R-modules induces an exact sequence
0 —— Tors(M) — Tors(N) — Tors(L) ,
but not necessarily an exact sequence

0 — Tors(M) — Tors(N) —— Tors(L) —— 0 .

~
t~
~
o

Proof. 1t is clear that any homomorphism ¢ takes torsion to torsion, hence the sequence is
well defined. Since restriction of an injection obviously is injective it is sufficient to check
exactness in the middle.

Let f: M - N and g : N = L be the morphisms in question. Since g o f = 0, the same is



7

true for the restriction to any submodules. Let n € Ker(Tors(g)), there exists an m € M
such that f(m) = n, we need to show that m € Tors(M). Since there exists r € R not
zero-divisor such that 0 = rn = f(rm) we have rm € Ker(f), but f is injective. Hence
rm =0 and m € Tors(M ).

We have a surjection of Z-modules Z — 7Z/27Z, but it does not induce a surjection on
torsion submodules. U

Exercise 7. Let M € Mat(n X n, k) for a field k. Show that there is a basis with respect
to which M is block diagonal with blocks of the form

00 ... 0 a
1 0 KX 0 aq
0 . o
0 0 ~ 0 ago
0 0 ... 1 aygq

Hint: M acts naturally on some n-dimensional k-vector space V.. Consider V as a k[x]-
module via f -v = f(M)(v) and use the classification of finitely generated modules over a

PID.

Proof. As k is a field, k[z] is a PID. Also, V is finite dimensional over k, so it is finitely
generated (by a k-basis) over k[x]. Therefore the structure theorem says that V' = k[z]® @
P, k[x]1/(f;) for some monic polynomials f; of degree d;. As V is finite dimensional
over k C k[z], and k[x] itself is not, we see that [ = 0. Decompose V into ®;-,V; where
Vi = k[2]/(f;), noting that V; is d;-dimensional as a k-vector space. Note that M preserves
each V; as it is a sub-k[x]-module of V. Thus if we choose a basis of V' which is a union of
bases of the V;, the matrix of ¢ is block diagonal with blocks corresponding to the V;. We
now show that if we choose these bases in a particular way, we get the required form.

The action of M on V; corresponds under this isomorphism to the k-linear map "multipli-
cation by z" on k[x]/(f;). We choose the basis of V; to be the elements which correspond
via the isomorphism to the elements {1, z, ..., %'} of k[z]/(f,). It is clear that these span,
and are linearly independent. If we define a; by f;(z) = P Z?gl a;z’ then the matrix of
the linear map given by multiplication by x on k[x]/(f;) has the required form. O



