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Rings and modules Exercises

Sheet 3 - Solutions

Exercise 1. Computing a presentation of an R module M means explicitly determining an

exact sequence of the form R
ht η
º R

hs ε
ºMº 0. Do the following computations.

(1) Compute a presentation of the Z-module

M �� Z�2, 9� � Z�4, 3� � Z�6, 8� N Zh Z.
(2) Let R � Mat2�2�Z� be the ring of 2 � 2-matrices over Z. Compute a presentation of

the left R-module

M �� R �2 0
0 0


 �R �0 3
2 0


 N R.

Proof. (1) We de�ne a surjective morphism ε � Z3
� M by e1 ( �2, 9�, e2 ( �4, 3�,

e3 ( �6, 8�. Then we calculate generators of the kernel:�a1, a2, a3� is mapped to zero if and only if the following two equations are satis�ed:

2a1 � 4a2 � 6a3 � 0
9a1 � 3a2 � 8a3 � 0

From the �rst equation we �nd a1 � �2a2 � 3a3. Substituing for a1 in the second
equation gives us 15a2 � �19a3. This implies that a2 � �19t, a3 � 15t for t " Z. This
gives that a1 � �2��19t�� 3�15t� � �7t. We conclude that a presentation is given by

Z
η
� Z3 ε

�M � 0

where the �rst map is η � t( ��7t,�19t, 15t�
(2) We de�ne a surjective morphism ε � R

2
�M by

e1 ( �2 0
0 0


, e2 ( �0 3
2 0



and we are interested in calculating generators of the kernel. I.e., we calculate the
solution set of the matrix equation

�a b
c d


 �2 0
0 0


 � �α β
γ δ


 �0 3
2 0


 � �2a � 2β 3α
2c � 2δ 3γ


 � 0

Hence the kernel consits of the elements ��a b
c d


 , �α β
γ δ



 such that a � �β, c � �δ,

α � γ � 0. I.e., the elements of the form

��a b
c d


 , �0 �a
0 �c



 .
Thus, the map η � R � R

2
de�ned by

�a b
c d


( ��a b
c d


 �1 0
0 1


 , �a b
c d


 �0 �1
0 0




gives a presentation R

ht η
� R

hs ε
�M � 0 of M .

□
1



2

Exercise 2. Do the following:

(1) Calculate the Smith normal form of the following matrix over Z.

�������

1 9 1
�2 �6 0
2 �8 2
�1 1 5


������
(2) (i) Find a direct sum of cyclic Z-modules isomorphic to the Z-module M with gen-

erators e1, e2, e3, e4 and relations

e1 � 2e2 � 2e3 � e4 � 0
9e1 � 6e2 � 8e3 � e4 � 0

e1 � 2e3 � 5e4 � 0

[Hint/Remark: By de�nition, M is the quotient of the free Z-module on 4 genera-

tors,4

i�1 Zei by the submodule generated by e1�2e2�2e3�e4, 9e1�6e2�8e3�e4
and e1�2e3�5e4. Notice that in the quotient, e1, . . . , e4 then satisfy exactly these
relations.]

(ii) Explicitly give 'nice' generators ofM , in terms of the original generators e1, e2, e3, e4.
Here, f1, . . . , fs are 'nice' generators if the relations they satisfy are generated by
relations of the form mifi � 0, where m1, . . . ,ms " Z are integers.

Proof. (1) We follow the algorithm for using row and column operations to produce the
Smith normal form of a matrix.

Step 1a: Ensure that the �1, 1�th entry is the principal generator for the ideal gen-
erated by the entries of the �rst row and column. In this case it is already true, so we
move on.

Step 1b: Use that property to remove all other entries in the �rst column by adding
a multiple of the �rst row to subsequent rows. Then remove all other entries in the
�rst row by adding a multiple of the �rst column to later columns:

�������

1 9 1
�2 �6 0
2 �8 2
�1 1 5


������
�

�������

1 9 1
0 12 2
0 �26 0
0 10 6


������
�

�������

1 0 0
0 12 2
0 �26 0
0 10 6


������
Step 2a: Ensure the �2, 2�th entry is the principal generator for the ideal generated by

the second row and column. In this case we must swap the second and third columns.

�������

1 0 0
0 12 2
0 �26 0
0 10 6


������
�

�������

1 0 0
0 2 12
0 0 �26
0 6 10


������
Step 2b: Remove other non-zero entries in the second row and column.

�������

1 0 0
0 2 12
0 0 �26
0 6 10


������
�

�������

1 0 0
0 2 12
0 0 �26
0 0 �26


������
�

�������

1 0 0
0 2 0
0 0 �26
0 0 �26


������
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Step 3: Tidy up the resulting matrix to obtain Smith normal form:

�������

1 0 0
0 2 0
0 0 �26
0 0 �26


������
�

�������

1 0 0
0 2 0
0 0 �26
0 0 0


������
�

�������

1 0 0
0 2 0
0 0 26
0 0 0


������
(2) (i) In terms of the generators e1, . . . , e4 of M given in the exercise the surjection

Z4
�M de�ned by these generators has kernel K spanned by

�������

1
�2
2
�1


������
,

�������

9
�6
�8
1


������
and

�������

1
0
2
5


������
.

So K is the image of the linear map Z3
� Z4

given by the matrix

�������

1 9 1
�2 �6 0
2 �8 2
�1 1 5


������
As discussed in section 4.1 of the lecture notes, multiplying a matrix to the left
and right with invertible matrices doesn't change the isomorphism type of the
cokernel. Hence M is isomorphic to the cokernel of the Smith normal form of the
above matrix, i.e.

�������

1 0 0
0 2 0
0 0 26
0 0 0


������

The cokernel of this matrix is

�0Ì ÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒÎ
ZªZh Zª2Zh Zª26Zh Z, so we obtain

M 	 Zª2Zh Zª26Zh Z.

(ii) We want to �nd the elements of M which correspond to the canonical generators
of Zª2Zh Zª26Zh Z (i.e. the vectors with precisely one component equal to 1
and 0's everywhere else). Write

A ��

�������

1 9 1
�2 �6 0
2 �8 2
�1 1 5


������
, D ��

�������

1 0 0
0 2 0
0 0 26
0 0 0


������
We have found invertible matrices P " GL4�Z� and Q " GL3�Z� such that

PAQ � D
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We can rephrase this as a commutative diagram

Z3 Z4

Z3 Z4

fA

fP

fD

fQ

where fB denotes the linear map associated to the matrix B. We then have that
fP induces an isomorphism

fP �M � coker�fA�� coker�fD�
However, it is clear that a nice basis for coker�fD� is given by the classes of�e2, . . . , e4�, so a nice basis for M � coker�fA� is given by the classes of

�fP�1�e2�, fP�1�e3�, fP�1�e4��
Thus, we simply have to compute P

�1
(i.e. the inverse of the operations we did

on the rows) and take the last three columns of this matrix as this nice basis.
Thus we have to �nd P , and for this we need to keep track of the line operations
we performed on A to �nd the Smith normal form. By revisiting the solution of
(1), this gives

P �

�������

1 0 0 0
0 1 0 0
0 0 1 0
0 0 �1 1


������
�

�������

1 0 0 0
0 1 0 0
0 0 1 0
0 �3 0 1


������
�

�������

1 0 0 0
2 1 0 0
�2 0 1 0
1 0 0 1


������
so

P
�1
�

�������

1 0 0 0
�2 1 0 0
2 0 1 0
�1 0 0 1


������
�

�������

1 0 0 0
0 1 0 0
0 0 1 0
0 3 0 1


������
�

�������

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1


������
�

�������

1 0 0 0
�2 1 0 0
2 0 1 0
�1 3 1 1


������
.

Thus, a nice basis is given by the images of f1 �� e2�3e4, f2 �� e3�e4 and f3 � e4.
In M , they satisfy the relations 2f1 � 0, 26f2 � 0 (and f3 sati�es no non-trivial
relation).

□

Exercise 3. Let R � Q�x�. Find a direct sum of cyclic R-modules isomorphic to the
R-module with generators e1, e2 and relations

x
2
e1 � �x � 1�e2 � 0

�x3
� 2x � 1�e1 � �x2

� 1�e2 � 0
.

Proof. As before, we get a homomorphism R
2
� M with kernel K, which is given by the

image of the map R
2
� R

2
de�ned by the matrix

� x
2

x
3
� 2x � 1

x � 1 x
2
� 1
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We put this into Smith normal form. We have that the ideal �x2
, x� 1� � 1 and 1� x

2
��1 � x��1 � x� � 1. The �rst step in the algorithm therefore tells us to multiply from the

left by the matrix

� 1 1 � x

��x � 1� x
2 
 .

We get

� 1 1 � x

��x � 1� x
2 
 � x

2
x
3
� 2x � 1

x � 1 x
2
� 1


 � �1 3x � x
2

0 ��3x2
� 3x � x

3
� 1�


By an elementary column operation this gives:

�1 0

0 ��x � 1�3

So this means that there is a di�erent set of generators f1 and f2 of M that satis�es the

relations: f1 � 0 and �x � 1�3f2 � 0, hence:

M 	 Q�x�«�x � 1�3
□

Exercise 4. Give an example of an in�nitely generated Z-module which is not an (in�nite)
direct sum of copies of Z and Z©nZ for various choices of n.

Proof. We claim that an example is given by Q as a Z-module. Indeed, assume for sake
the of contradiction that Q 	 ZhI

h,i Z©ni for some set I and some ni ' 2. Since Q is
torsion-free we see that the sum of Z©ni is empty. To prove that Q is not a free module,
we observe that every two cyclic (isomorphic to Z) submodules of Q intersect. Indeed, let
p1©q1 and p2©q2 be two rational number belonging to two di�erent cyclic modules. Then
p1p2 � q1p2 � p1©q1 � p1q2 � p2©q2 is an element in the intersection. Therefore, if Q is free,
then it must be generated by a single element, i.e. Q 	 Z, which of course is a contradiction.

An other way to show that Q ©	 ZhI
for any I, is to notice that the endomorphism

��2� � a( 2a is surjective on Q, but not on ZhI
.

□

Exercise 5. Let R � Z�x� and consider the matrix A � �2 x
0 0


 " Mat2�2�R�.
(1) Show that A is not equivalent to a diagonal matrix. The equivalence that we consider

here is the one introduced in the lectures, that is, up to left or right multiplication by
an invertible matrix.

(2) Show that the cokernel of the map A � R
h2
� R

h2
is isomorphic to a direct sum of

cyclic R-modules, but is not isomorphic to an R-module of the form R
hm
h,n

i�1
Rª�ai�

where a1, . . . , an " R ¯ r0x.
(3) Show that �2, x� is not isomorphic to a direct sum of cyclic R-modules.

Proof. (1) We will show that A is not equivalent to a diagonal matrix. Suppose that

A
¬
� �λ1 0

0 λ2

 is equivalent to A. Then rank�A¬� � rank�A� � 1 and therefore λi � 0
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for i � 1 or i � 2. By multiplying from the left and the right by the matrix �0 1
1 0


, we
may assume that λ2 � 0 (and denote λ � λ1 from now on). Then there exists invertible

matrices S � �s11 s12
s21 s22


 and T � �t11 t12
t21 t22


 such that SA � A
¬
T , i.e.

�2s11 xs11
2s21 xs21


 � �λt11 λt12
0 0



Since Z�x� is a UFD, the equality 2s11 � λt11 and xs11 � λt12 implies that there exists
some t

¬
" Z�x� such that t11 � 2t

¬
and t12 � xt

¬
. Since the units of Z�x� are precisely

�1, we obtain �1 � det�T � � t11t22� t12t21 � 2t
¬
t22�xt

¬
t21. This implies that the ideal�2, x� contains 1, a contradiction.

(2) Let M be the cokernel of A � Z�x�2 � Z�x�2. It is straightforward to see that

M 	 Z�x�«�2, x� h Z�x�, which is a direct sum of cyclic R-modules. Suppose by

contradiction that there exist a1, ..., an " Z�x� ¯ r0x and m ' 0 such that

Z�x�«�2, x�h Z�x� 	 �Z�x��hm
h

n

-
i�1

Z�x�«�ai�.
Then the torsion-submodules of the LHS and RHS must be isomorphic, i.e.

Z�x�«�2, x� 	
n

-
i�1

Z�x�«�ai�.
But thus the annihilators of the LHS and the RHS must agree. For the LHS the
annihilator is �2, x�, while for the RHS it is �n

i�1�ai�. But as Z�x� is a UFD, the latter
is a principal ideal (generated by the least common multiple of the ai's), while the
former isn't principal. This is the desired contradiction.

(3) Suppose by contradiction that φ � �2, x� 	

�,i"I Mi is an isomorphism, where rMixi"I
is a family of cyclic R-modules. For all i " I, let fi " �2, x� be such that φ�fi� is
a generator of Mi. Then fifj is in the intersection φ

�1�Mi� = φ
�1�Mj�, while the

intersection Mi =Mj inside,n

i�1Mi is equal to 0. Therefore all but one of the Mi's
must be trivial. But then �2, x� is principal, which is a contradiction as well.

□

Exercise 6. Show that an exact sequence

0 M N L 0

of R-modules induces an exact sequence

0 Tors�M� Tors�N� Tors�L� ,

but not necessarily an exact sequence

0 Tors�M� Tors�N� Tors�L� 0 .

Proof. It is clear that any homomorphism ϕ takes torsion to torsion, hence the sequence is
well de�ned. Since restriction of an injection obviously is injective it is su�cient to check
exactness in the middle.
Let f � M � N and g � N � L be the morphisms in question. Since g ` f � 0, the same is
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true for the restriction to any submodules. Let n " Ker�Tors�g��, there exists an m " M
such that f�m� � n, we need to show that m " Tors�M�. Since there exists r " R not
zero-divisor such that 0 � rn � f�rm� we have rm " Ker�f�, but f is injective. Hence
rm � 0 and m " Tors�M�.
We have a surjection of Z-modules Z � Z©2Z, but it does not induce a surjection on

torsion submodules. □

Exercise 7. Let M " Mat�n � n, k� for a �eld k. Show that there is a basis with respect
to which M is block diagonal with blocks of the form

�����������

0 0 ... 0 a0
1 0 � 0 a1
0 � � � �

0 0 � 0 ad�2
0 0 ... 1 ad�1


����������
Hint: M acts naturally on some n-dimensional k-vector space V . Consider V as a k�x�-

module via f � v � f�M��v� and use the classi�cation of �nitely generated modules over a
PID.

Proof. As k is a �eld, k�x� is a PID. Also, V is �nite dimensional over k, so it is �nitely

generated (by a k-basis) over k�x�. Therefore the structure theorem says that V 	 k�x�hl
h

,m

i�0 k�x�©�fi� for some monic polynomials fi of degree di. As V is �nite dimensional
over k L k�x�, and k�x� itself is not, we see that l � 0. Decompose V into h

m
i�0Vi where

Vi 	 k�x�©�fi�, noting that Vi is di-dimensional as a k-vector space. Note that M preserves
each Vi as it is a sub-k�x�-module of V . Thus if we choose a basis of V which is a union of
bases of the Vi, the matrix of ϕ is block diagonal with blocks corresponding to the Vi. We
now show that if we choose these bases in a particular way, we get the required form.
The action of M on Vi corresponds under this isomorphism to the k-linear map "multipli-

cation by x" on k�x�©�fi�. We choose the basis of Vi to be the elements which correspond

via the isomorphism to the elements r1, x, ..., xdi�1x of k�x�©�fi�. It is clear that these span,
and are linearly independent. If we de�ne ai by fi�x� � x

di �<di�1

j�0 ajx
j
then the matrix of

the linear map given by multiplication by x on k�x�©�fi� has the required form. □


