EPFL - Fall 2024 Domenico Valloni
Rings and modules Exercises
Sheet 2 - Solutions

There was one bonus exercise on this problem sheet. The exercise was denoted by the
symbol # next to the exercise number.

Exercise 1. Show that the following holds for an R-module M of finite length (M) (i.e.,
an R-module M that admits a composition series of finite length).

(1) If there is a short exact sequence

n

0 — M > M > M

~
o

of R-modules, then {(M) = [(M') + I(M").

(2) If N <p M is a proper submodule then I[(N) < [(M).

(3) Use (2) to show that any strict chain of submodules in M (not necessary a maximal
chain, i.e. not necessarily a composition series) has length smaller than or equal to
I(M). Conclude that a module M is of finite length if and only if M is both Noetherian
and Artinian.

Proof. (1) The solution has two steps: first we prove that both M' and M" have finite
length, and then we prove the formula.
For the first step, let 0 = My € M, & -+ & M; = M be a composition series of M (in
particular ¢ = [(M)). Up to isomorphism (of short exact sequences), we can view M '
as an actual submodule of M and M" = M/M' as the actual quotient of M by M’
Now for 0 < i < t, define M! = M' A M, and M = (M, + M')/M'; we would like to
understand the quotients of consecutive terms.
On the one hand, we have a natural map M;H = M;,4 — Mi+1/Mi, and the kernel

!
of this composition is exactly MZ' . Hence we obtain an induced inclusion M+ / M l’ -
1
Mi+1/Mi. As the latter is simple, we obtain that Mi+1/MZ.' is either trivial or simple.

On the other hand, we have by the third isomorphism theorem that Mz"+1/MZ" =

(M;q + M)/(Ml + M) Then, we have a natural map

My = My + M — (M + ]\4)/(]\4Z + M), and the composed arrow is easily seen
to be surjective. Also, M; is included in the kernel of the composition, so we obtain

an induced surjective map Mi+1/Mi — (M4 + M)/(Mz + M) = Mz,:—l/MZ" As
Mi+1/Mi is simple, we obtain that Mz”+1/MZ" is either trivial or simple.

In conclusion, the quotients of consecutive terms both in M('] € - € M/ and M(')' c
.« € M, are all either simple or trivial. So by deleting some of the modules in the
sequence, we will obtain composition series both for M' and M". Hence M' and M"
have finite length (and length smaller than or equal to t).

Now for the second step, by the one-to-one correspondence of submodules of M "
and submodules of M containing M’ it is clear that a composition series for M' can be

extended to a composition series for M by adding the preimage of a composition series
1



of M". This gives a composition series for M of length l(]\/[') +1(M"). Therefore, since
by the Jordan Holder Theorem [(M) is the length of any composition series, we obtain
(M"Y + (M"Y = 1(M).

(2) Follows directly from the argument above.

(3) Let 0 = My & My ¢ -+ ¢ M,, = M be a strict chain of length n. Then by (2) we have
(M) > I(M,_y) > -+ >1(My) =0, hence [(M) = n. Since every chain of M is of
finite length bounded by (M), M is both Noetherian and Artinian. The implication
in the other direction was discussed in Remark 3.2.4 of the lecture notes.

O

Exercise 2. Let R be a ring and let M be a finitely generated module over R. Let f :
M — M be an R-module homomorphism.

(1) Suppose that R is a Noetherian ring.
(i) Does injectivity of f implies surjectivity?
(ii) Does surjectivity of f implies injectivity?
(iii) What happens if R is not necessarily Noetherian?
Hint: For one of the directions, try to reduce to the Noetherian case by considering
the Z-subalgebra of R generated by finitely many suitable elements.
(2) Suppose that M is a module of finite length, show that f is injective if and only if f is
surjective.

Proof. (1) (i) Let R be a ring with a € R neither a unit nor a zero divisor, then multi-
plication by a is an injective but not surjective morphism m, : R = R.

(ii) Suppose that M is a finitely generated module over a Noetherian ring, then M
is Noetherian. Let f : M — M be a surjective morphism. For all k£ we have
containments ker(f") ¢ ker(f**'). Therefore, there exists a positive integer m
such that ker(f™*") = ker(f™). In particular, f : im(f™) — M is injective, but
by surjectivity im(f") = M, therefore f is injective.

Remark 0.1. Amazingly, the statement remains true even if R is not Noetherian. Let
us prove it now. Let e¢; for 1 < ¢ < n be generators of M as an R-module. Let
fle:) = Yo aije; for all i. By surjectivity there exists by, such that e; = Y, _, bjx f(er)
for all j. Suppose that m € ker(f) with m = ), m;e;. Let Z[a;4, b;;,m] = R be the
natural inclusion morphism, where Z[a;;, b;;, my] is the Z-subalgebra of R generated by
the a;;’s, b;;’s and my’s. There is therefore an induced structure of R = Zl aj, bij, my.]-
module on M. Let M' be the R-submodule generated by e; for 1 < i < n. By
definition of M' the morphism f induces a morphism f' : M' — M', it is surjective
since €; = f(), birer). As now R'is Noetherian (it is a finitely generated Z-algebra),
we obtain by the previous point that the element m € ker(f') is zero. As m € ker(f)
was arbitrary, we conclude that f is injective.

Later, we will see a very important statement called Nakayama’s lemma. This will
provide a very easy proof of this fact over any (commutative) ring, without relying on
Noetherian approximation as above.

(2) Consider the short exact sequence

0 — ker(f) > M > im(f) —— 0 .
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By Exercise 1.1, we have [(M) = I(ker(f)) + I(im(f)). Since the zero module is the
only module of length zero, f being surjective implies that ker(f) = 0. Converserly, if
f is injective, then [(M) = I[(im(f)), hence I[(im(f)) can not be a proper submodule

of M by the same exercise, i.e. M =im([).
0]

Exercise 3. (1) Let R be a PID, and let f € R be a product of n = 0 prime elements.

(2)

(3)
(4)

Prove that the length of R/(f) as an R-module is equal to n.
Let f € R[x] be a nonzero polynomial with exactly n = 0 non-real roots (counted with
multiplicity). Prove that

dimg (R[21/(f)) - lengtheg,; (R[21/(f)) = n/2
Let M be a Z-module. Prove that M has finite length if and only if it is finite (as a
set).
Give an example of a ring and a module over this ring which has finite length but
infinitely many submodules.

Proof. (1) We prove the assertion by induction on n; for n = 0 it clearly holds, and for

n = 1 it holds since primes in a PID are maximal, and thus the quotient of R by a
prime is simple.

So assume that we have shown the assertion for some n = 1, and let f be a product of
n + 1 primes. Let p be a prime dividing f and write f = pg where g is a product of n
primes. Then we have a natural surjection R/(f) —» R/(g) of R-modules, and let K
be the kernel. It is straightforward to see that K = R+ (g + (f)). Now we have a short
exact sequence

O—>AnnR(g+(f))—>RM>K—>O.
Finally, one can easily verify that Anng(g + (f)) = (p), and thus K = R/ (p)- As we
then have a short exact sequence

0= Blp) = B[(p) = B[(g) 0.
it follows from Exercise 1.1 and the induction hypothesis that R/(f) has length n + 1.

The dimension of R[x]/(f) as an R-vector space is d = deg f. Furhtermore, as R € C
is a field extension of degree 2, the irreducible polynomials of R[z] are the linear
polynomials and the quadratic polynomials having no real roots. Therefore, if m is the
number of real roots of f counted with multiplicity, one can see that f is the product
of exactly m + n/2 irreducible polynomials. Hence by the previous exercise we obtain
that the length of R[ﬂ/(f) is equal to m +n/2. As d = m + n, we obtain

dimR(R[x]/(f)) — lengthg, (R[x]/(f)) =m+n—(m+n/2)=n/2.

If M is finite as a set then M has finite length as there are only finitely many sub-
modules. Conversely, if M has finite length, then by Exercise 1 it is in particular
Noetherian, so finitely generated. By the classification of finitely generated Z-modules,
we have an isomorphism M = Z® @ F for some finite Z-module F and r = 0. If by
contradiction r = 1, then M contains a copy of Z as a submodule, so again by Exercise
1 we obtain that Z has finite length. This is not true, e.g. as Z is not Artinian. Hence
r=0and M = F is finite.



(4) It suffices to take an infinite field £ and a finite dimensional k-vector space V of di-
mension greater than or equal to 2. It is clearly of finite length, and if v{,v, € V' are

linearily independent, then {k - (v; + Avy)} e is an infinite family of distinct subspaces.
[

Exercise 4. o Let n,m > 0 be integers, let k be a field and let R := k[x,y]. Show that
the R-module

M := k[%y]/(w",ym)

has length nm.
Hint: Fxercise 1 can be useful to decompose this computation into easier ones, allowing
some induction arqument. The same applies for the next point.

o Let p > 0 be a prime number. Compute the length of

21/ 2" - p).
as a module over the ring Z[z].
Proof. (1) First let us show the following: for any d = 0, the module
Ny := klz,y] [ (2,4
has length d. Set
S :=klz.y]/ (2)

and 7 : R — S the quotient map. By Exercise 2.3 on sheet 1, we can define an S-
module structure on N, such that for all » € R and n € Ny, r - n = w(r) - n.

With this in mind, it is immediate that S-submodules of N; are the same as R-
submodules of Ny, so in particular its length is unchanged.

Now, S = k[y] by setting x = 0, and through this isomorphism we see that N, corre-

sponds to
Kyl /(%

so we know by Exercise 3.1 that its length is d.

Now, let us compute the length of
Nn,m = k}[l‘, y]/(gjn7 ym)

is nm. If n = 1, this was already worked out before, so assume n = 2. Consider the
morphism ¢ : k[z,y] = N, given by sending 1 to 2" + (z",5™). Note that the
sequence

¢
k:[a@y] - Nn,m - n—1,m -0
is exact where NV, ,, — N, _;,, is the usual quotient map, so we obtain a short exact
sequence
0— k[l’, y]/ker(gb) - Nn,m - n—1m -0

Let us understand ker(¢). Clearly, (z,y™) € ker(¢), and given a € ker(¢), we get that
by definition there exists b, ¢ € k[x,y] such that

-1
" a=2"b+y"c
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In particular 2" divides y"'c, so since z and y are coprime (k[z,y] is a UFD) we get
that z"~" divides ¢ (write ¢ = 2"~'¢'). Thus,
m |
a=zxzb+y ¢

or in other words a € (x,y™).

Hence we have proven that ker(¢) = (z,y™), so we finally have a short exact sequence
O_)Nl,m _)Nn,m_) n—1,m -0
which by induction on n gives us

Z(Nn,m) = l(Nn—l,m) + Z(NLm) = (n - 1)m +m = nm.
Let M := Z[2]/(p°, 2> — p), and consider the quotient map

m: 2] [ (2, o — p) = el [(p,2® — p).
Note that the latter module is isomorphic to

N = (Z[pZ2]) [ (2%,

and since the Z[x]-action this module factors through an action of Z/pZ[z], let us
compute the length of N as a Z/pZ[x]-module. Since this ring is a PID, we deduce by
Exercise 3.(1) that the length of N is 2.

Let us compute ker(w). By the third isomorphism theorem,

ker(r) = (P, v’ - p)/(pz, (2> = p)),

so in particular it is generated by p (i.e. the class of p in the quotient). Hence, we have
a surjection

0:Z[x] - ker(n),
sending 1 to p.

Let us understand ker(#). It is immediate to see that (p,z” — p) € ker(d). On the
other hand, if f(z) € ker(f), then pf(z) = p°a(z) + (x> —p)b(z) for some a(z),b(z) €
Z[z]. In particular, p divides (z* — p)b(x), so since p is prime, p divides b(z). Write
b(z) = pb'(z). Then

f(z) = pa(z) + (2" = p)b'(x) € (p, 2" - b).

Thus, we have proven that
(p,” = p) = ker(0).

In other words,

ker(m) = Z[m]/(p’ 2° —p) = N.

Equivalently, we have a short exact sequence
0->N->M->N->0

so by additivity of the length,

length(M) = 2length(N) = 4.
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Exercise 5. # Compute the length of the C[z,y, z]-module module
M = (C[x,y,z]/(xS + 307 4 2y — 1, Z2024)_

Exercise 6. Let R be a Noetherian ring. Are the following rings Noetherian? Are they
Artinian?

(1) R[z, %] ={Y" _ ax':a; € R,m,n €N}

(2) R[xlv Lo, T3, ]

(3) R[[z]], the ring of formal power series' with coefficients in R. '

Hint: For an ideal I and each n € N, let I,, := {a,, : 3 z;:n a;x' € I}. Then adapt
the proof of the Hilbert basis theorem.
(4) C°(R), the ring of continuous functions R — R with pointwise operations.

(3) RIx)/((2 - 1)%)

Proof. (1) We will show that R[z, i] is isomorphic to a quotient of a polynomial ring. It
then follows that it is Noetherian by the Hilbert basis theorem (as Noetherianity is
preserved under quotients).

The isomorphism in question comes from the R-algebra homomorphism

1
6 : Rlu,v] » Rz, ]

1

U T, ve o,
which exists by the universal property of R[u,v]. This is surjective as any element of
R[x,1/x] can be written as some polynomial in z and i by definition. Thus it has

some kernel I, and hence R[z, i] = R[u,v]/I is Noetherian.

As a side note, we can go further, and identify the kernel ker ¢ = I to be the ideal
(uv = 1). For it is clear that uv — 1 € I, and suppose that g € ker ¢. Then we can use
elements of (uv—1) to cancel mixed terms, and so write g = g; + g, where ¢g; € (uv—1)
and gy = ) gau + ) i bjv’ for some a;,b; € R. But it is clear that g, cannot be in
ker ¢ unless all of its coefficients are zero. So g = g; € (uv —1).

Take R # 0 to be any Noetherian ring. There is an infinite descending chain of
ideals in R[z,z '] given by (z +1) 2 ((z + 1)*) 2 ((z + 1)*) 2 .... We need to
prove that the containment is strict. To this end suppose that there exists a k£ > 0
such that ((z + 1)*) = ((x + 1)™"'). Then there exists f € k[z,2 '] such that
(z+ 1) = f(z,27 V@ + D Write f(z,27") = Y ci<n a;z" with m < n integers
and a,,,a, # 0. Then there is a term of degree k + n + 1 with coefficient a,, # 0 on
the right-hand side, and thus m < n < 0 as the left-hand side has only terms of degree
less than or equal to k. But then there is a non-zero term of degree m < 0 on the
right-hand side corresponding to a,,z". This is not possible, since the left-hand side
has no non-zero term with negative degree. We conclude that f = 0, but this amounts
to a contradiction since (z + 1)k # 0 since it has non-zero coefficients corresponding to

the terms 2" and 1. Hence R[z, i] isn’t Artinian.

LRI[2]] = {X:% a;z' ¢ a; € R}, where multiplication and addition are defined formally, as what you
think they should be. These are purely formal objects: there is no requirement for any kind of convergence.



(2)

(3)
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R[ x4, x4, ...] is not Noetherian, as the ideal (1, 5, ...) cannot be finitely generated. It
is not Artinian (for any choice of R # 0), since it contains the strictly descending chain
(z)2@D2@ND2....
R[[x]] is not Artinian (for any choice of R # 0), since it contains the strictly descending
chain ()2 ()2 (*) 2....

R[[z]] is Noetherian, and the proof is a variant of the proof of the Hilbert basis
theorem.

To this end suppose I is an ideal of R[[z]]. For each integer n = 0, let

I, :={a, : EIZaixi €I}

For each n, this is an ideal of R, and by multiplying each power series by = we see
that I,, € I,,,, for each n. So by the ascending chain condition, there is M such that
I, =1, foralln > M.

Also, for each i < M, I, is finitely generated, so we may fix a finite set {a; ;}o<j<n
of generators for I; (we take always the same number N of generators by repeating
elements if needed). For each 0 <i < M and 0 < j < N, fix f;; € I such that

fij = ai,jl’l + higher order,

which exsits by construction of I;.
We claim that the the ideal J generated by the set {fm}gs@s% is equal to I. Let
<j=

g = Z,:io bk,:ck € I. By construction of I;, we can find an element h, € J having
the same term of order 0 as g: there exists an R-linear combination of agy,...,ao N
equal to by, and taking hg to be the same R-linear combination of fy,, ..., fo y Will do.
Similarly, we can find an element h; € J having the same term of order 1 as g — hy.
Iterating this procedure, we construct an element h = hg + «+- + hy;_; € J such that
g — h has no terms of degree strictly smaller than M.

Now we proceed similarly, but with a slight modification. As before, we can find
coefficients cy, ..., con € R such that [y = coofryo+ ** + confrur,n has the same term
of order M as g — h. Then, we can find c;,...,¢c; v € R such that [} = ¢y g2 fao +
o+ + ¢y o fuyn (we added a factor z in there to make things of the correct order; in

the next step we will need a factor z° and so on) has same term of order M + 1 as
g —h —ly. We iterate this procedure indefinitely, and for 0 < 5 < N define the power
series c; = Zkao ck’jxk, as well as [ = cofpro + - + cnfun € J. One can then show
by comparing coefficients that g —h —1 = 0. As h,l € J, we conclude g € J, and as
g € I was arbitrary, we obtain I = J. Hence I is finitely generated, and thus R[[z]]
is Noetherian.

C°(R) is neither Artinian nor Noetherian. To this end define I, = {f € C(R) : f(z) =
0 for all x = n}, where n € Z. It is clear that I,, C I,.;. We need to show that the
containment is strict. To this end, define for example the continuous function f by
flz)=0forallz =2n+1and f(x) =2 —(n+1) for all z < n+ 1, this is a well-defined
continuous function f € I, \ I,,. So (I,,),ez is a strictly increasing sequence of ideals
indexed by Z, showing that CO(R) is neither Artinian nor Noetherian.

The most efficient solution is the following: it suffices to notice that the dimension of

R[ﬂ?]/((x - 1)2x) as an R-vector space is equal to 3 (the degree of the polynomial), so



in particular it is finite. As ideals of R[ﬂf]/((x - 1)2x) are in particular R-subspaces,

and finite dimensional vector spaces obviously satisfy the ascending and descending

chain conditions, we obtain that R[x]/((g; - 1)2;5) is both Artinian an Noetherian.
O



