
EPFL - Fall 2024 Domenico Valloni

Rings and modules Exercises

Sheet 2 - Solutions

There was one bonus exercise on this problem sheet. The exercise was denoted by the
symbol ¹ next to the exercise number.

Exercise 1. Show that the following holds for an R-module M of �nite length l�M� (i.e.,
an R-module M that admits a composition series of �nite length).

(1) If there is a short exact sequence

0 M
¬

M M
¬¬

0

of R-modules, then l�M� � l�M ¬� � l�M ¬¬�.
(2) If N $R M is a proper submodule then l�N� $ l�M�.
(3) Use (2) to show that any strict chain of submodules in M (not necessary a maximal

chain, i.e. not necessarily a composition series) has length smaller than or equal to
l�M�. Conclude that a module M is of �nite length if and only if M is both Noetherian
and Artinian.

Proof. (1) The solution has two steps: �rst we prove that both M
¬
and M

¬¬
have �nite

length, and then we prove the formula.
For the �rst step, let 0 �M0 àM1 à� àMt �M be a composition series of M (in

particular t � l�M�). Up to isomorphism (of short exact sequences), we can view M
¬

as an actual submodule of M and M
¬¬
� MªM ¬ as the actual quotient of M by M

¬
.

Now for 0 & i & t, de�ne M
¬

i � M
¬
=Mi and M

¬¬

i �
�Mi �M

¬�¬M
¬; we would like to

understand the quotients of consecutive terms.
On the one hand, we have a natural map M

¬

i�1 0Mi�1�
Mi�1ªMi

, and the kernel

of this composition is exactly M
¬

i. Hence we obtain an induced inclusion M
¬

i�1¬M
¬

i
0

Mi�1ªMi
. As the latter is simple, we obtain that M

¬

i�1¬M
¬

i
is either trivial or simple.

On the other hand, we have by the third isomorphism theorem that M
¬¬

i�1¬M
¬¬

i
	

�Mi�1 �M�«�Mi �M�. Then, we have a natural map

Mi�1 0 Mi�1 �M � �Mi�1 �M�«�Mi �M�, and the composed arrow is easily seen
to be surjective. Also, Mi is included in the kernel of the composition, so we obtain

an induced surjective map Mi�1ªMi
� �Mi�1 �M�«�Mi �M� 	 M

¬¬

i�1¬M
¬¬

i
. As

Mi�1ªMi
is simple, we obtain that M

¬¬

i�1¬M
¬¬

i
is either trivial or simple.

In conclusion, the quotients of consecutive terms both in M
¬

0 N � N M
¬

t and M
¬¬

0 N

� N M
¬¬

t are all either simple or trivial. So by deleting some of the modules in the
sequence, we will obtain composition series both for M

¬
and M

¬¬
. Hence M

¬
and M

¬¬

have �nite length (and length smaller than or equal to t).

Now for the second step, by the one-to-one correspondence of submodules of M
¬¬

and submodules of M containing M
¬
it is clear that a composition series for M

¬
can be

extended to a composition series for M by adding the preimage of a composition series
1
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of M
¬¬
. This gives a composition series for M of length l�M ¬�� l�M ¬¬�. Therefore, since

by the Jordan Holder Theorem l�M� is the length of any composition series, we obtain
l�M ¬� � l�M ¬¬� � l�M�.

(2) Follows directly from the argument above.
(3) Let 0 � M0 à M1 à� à Mn � M be a strict chain of length n. Then by (2) we have

l�M� % l�Mn�1� % � � � % l�M0� � 0, hence l�M� ' n. Since every chain of M is of
�nite length bounded by l�M�, M is both Noetherian and Artinian. The implication
in the other direction was discussed in Remark 3.2.4 of the lecture notes.

□

Exercise 2. Let R be a ring and let M be a �nitely generated module over R. Let f �

M �M be an R-module homomorphism.

(1) Suppose that R is a Noetherian ring.
(i) Does injectivity of f implies surjectivity?
(ii) Does surjectivity of f implies injectivity?
(iii) What happens if R is not necessarily Noetherian?

Hint: For one of the directions, try to reduce to the Noetherian case by considering

the Z-subalgebra of R generated by �nitely many suitable elements.

(2) Suppose that M is a module of �nite length, show that f is injective if and only if f is
surjective.

Proof. (1) (i) Let R be a ring with a " R neither a unit nor a zero divisor, then multi-
plication by a is an injective but not surjective morphism ma � R � R.

(ii) Suppose that M is a �nitely generated module over a Noetherian ring, then M
is Noetherian. Let f � M � M be a surjective morphism. For all k we have

containments ker�fk� L ker�fk�1�. Therefore, there exists a positive integer m
such that ker�fm�1� � ker�fm�. In particular, f � im�fm� � M is injective, but
by surjectivity im�fm� �M , therefore f is injective.

Remark 0.1. Amazingly, the statement remains true even if R is not Noetherian. Let
us prove it now. Let ei for 1 & i & n be generators of M as an R-module. Let
f�ei� � <n

i�1 aijej for all i. By surjectivity there exists bjk such that ej � <n

k�1 bjkf�ek�
for all j. Suppose that m " ker�f� with m � <imiei. Let Z�aij, bij,mk� � R be the
natural inclusion morphism, where Z�aij, bij,mk� is the Z-subalgebra of R generated by

the aij's, bij's and mk's. There is therefore an induced structure of R
¬
� Z�aij, bij,mk�-

module on M . Let M
¬
be the R

¬
-submodule generated by ei for 1 & i & n. By

de�nition of M
¬
the morphism f induces a morphism f

¬
� M

¬
� M

¬
, it is surjective

since ei � f�<k bikek�. As now R
¬
is Noetherian (it is a �nitely generated Z-algebra),

we obtain by the previous point that the element m " ker�f ¬� is zero. As m " ker�f�
was arbitrary, we conclude that f is injective.
Later, we will see a very important statement called Nakayama's lemma. This will

provide a very easy proof of this fact over any (commutative) ring, without relying on
Noetherian approximation as above.

(2) Consider the short exact sequence

0 ker�f� M im�f� 0 .
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By Exercise 1.1, we have l�M� � l�ker�f�� � l�im�f��. Since the zero module is the
only module of length zero, f being surjective implies that ker�f� � 0. Converserly, if
f is injective, then l�M� � l�im�f��, hence l�im�f�� can not be a proper submodule
of M by the same exercise, i.e. M � im�f�.

□

Exercise 3. (1) Let R be a PID, and let f " R be a product of n ' 0 prime elements.
Prove that the length of Rª�f� as an R-module is equal to n.

(2) Let f " R�x� be a nonzero polynomial with exactly n ' 0 non-real roots (counted with
multiplicity). Prove that

dimR �R�x�«�f�� � lengthR�x� �R�x�«�f�� � n©2
(3) Let M be a Z-module. Prove that M has �nite length if and only if it is �nite (as a

set).
(4) Give an example of a ring and a module over this ring which has �nite length but

in�nitely many submodules.

Proof. (1) We prove the assertion by induction on n; for n � 0 it clearly holds, and for
n � 1 it holds since primes in a PID are maximal, and thus the quotient of R by a
prime is simple.
So assume that we have shown the assertion for some n ' 1, and let f be a product of
n � 1 primes. Let p be a prime dividing f and write f � pg where g is a product of n
primes. Then we have a natural surjection Rª�f�� Rª�g� of R-modules, and let K
be the kernel. It is straightforward to see that K � R � �g� �f��. Now we have a short
exact sequence

0� AnnR�g � �f��� R
��g��f��
������ K � 0.

Finally, one can easily verify that AnnR�g � �f�� � �p�, and thus K 	 Rª�p�. As we
then have a short exact sequence

0� Rª�p�� Rª�f�� Rª�g�� 0,

it follows from Exercise 1.1 and the induction hypothesis that Rª�f� has length n� 1.

(2) The dimension of R�x�«�f� as an R-vector space is d � deg f . Furhtermore, as R N C
is a �eld extension of degree 2, the irreducible polynomials of R�x� are the linear
polynomials and the quadratic polynomials having no real roots. Therefore, if m is the
number of real roots of f counted with multiplicity, one can see that f is the product
of exactly m � n©2 irreducible polynomials. Hence by the previous exercise we obtain

that the length of R�x�«�f� is equal to m � n©2. As d � m � n, we obtain

dimR �R�x�«�f�� � lengthR�x� �R�x�«�f�� � m � n � �m � n©2� � n©2.
(3) If M is �nite as a set then M has �nite length as there are only �nitely many sub-

modules. Conversely, if M has �nite length, then by Exercise 1 it is in particular
Noetherian, so �nitely generated. By the classi�cation of �nitely generated Z-modules,
we have an isomorphism M 	 Zhr

h F for some �nite Z-module F and r ' 0. If by
contradiction r ' 1, then M contains a copy of Z as a submodule, so again by Exercise
1 we obtain that Z has �nite length. This is not true, e.g. as Z is not Artinian. Hence
r � 0 and M 	 F is �nite.
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(4) It su�ces to take an in�nite �eld k and a �nite dimensional k-vector space V of di-
mension greater than or equal to 2. It is clearly of �nite length, and if v1, v2 " V are
linearily independent, then rk ��v1�λv2�xλ"k is an in�nite family of distinct subspaces.

□

Exercise 4. ` Let n,m % 0 be integers, let k be a �eld and let R � k�x, y�. Show that
the R-module

M � k�x, y�«�xn
, y

m�
has length nm.
Hint: Exercise 1 can be useful to decompose this computation into easier ones, allowing

some induction argument. The same applies for the next point.

` Let p % 0 be a prime number. Compute the length of

Z�x�«�p2, x2
� p�,

as a module over the ring Z�x�.
Proof. (1) First let us show the following: for any d ' 0, the module

Nd �� k�x, y�«�x, yd�
has length d. Set

S �� k�x, y�«�x�
and π � R � S the quotient map. By Exercise 2.3 on sheet 1, we can de�ne an S-
module structure on Nd such that for all r " R and n " Nd, r � n � π�r� � n.
With this in mind, it is immediate that S-submodules of Nd are the same as R-
submodules of Nd, so in particular its length is unchanged.
Now, S 	 k�y� by setting x � 0, and through this isomorphism we see that Nd corre-
sponds to

k�y�«�yd�
so we know by Exercise 3.1 that its length is d.

Now, let us compute the length of

Nn,m �� k�x, y�«�xn
, y

m�
is nm. If n � 1, this was already worked out before, so assume n ' 2. Consider the
morphism ϕ � k�x, y� � Nn,m given by sending 1 to x

n�1
� �xn

, y
m�. Note that the

sequence

k�x, y� ϕ
�� Nn,m � Nn�1,m � 0

is exact where Nn,m � Nn�1,m is the usual quotient map, so we obtain a short exact
sequence

0� k�x, y�«ker�ϕ�� Nn,m � Nn�1,m � 0

Let us understand ker�ϕ�. Clearly, �x, ym� N ker�ϕ�, and given a " ker�ϕ�, we get that
by de�nition there exists b, c " k�x, y� such that

x
n�1

a � x
n
b � y

m
c
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In particular x
n�1

divides y
m
c, so since x and y are coprime (k�x, y� is a UFD) we get

that x
n�1

divides c (write c � x
n�1

c
¬�. Thus,

a � xb � y
m
c
¬

or in other words a " �x, ym�.

Hence we have proven that ker�ϕ� � �x, ym�, so we �nally have a short exact sequence
0� N1,m � Nn,m � Nn�1,m � 0

which by induction on n gives us

l�Nn,m� � l�Nn�1,m� � l�N1,m� � �n � 1�m �m � nm.

(2) Let M � Z�x�©�p2, x2
� p�, and consider the quotient map

π� Z�x�«�p2, x2
� p�� Z�x�«�p, x2

� p�.
Note that the latter module is isomorphic to

N � �Z©pZ�x��«�x2�,
and since the Z�x�-action this module factors through an action of Z©pZ�x�, let us
compute the length of N as a Z©pZ�x�-module. Since this ring is a PID, we deduce by
Exercise 3.(1) that the length of N is 2.
Let us compute ker�π�. By the third isomorphism theorem,

ker�π� � �p, x2
� p�¬�p2, �x2

� p��,
so in particular it is generated by p (i.e. the class of p in the quotient). Hence, we have
a surjection

θ�Z�x�� ker�π�,
sending 1 to p.
Let us understand ker�θ�. It is immediate to see that �p, x2

� p� N ker�θ�. On the
other hand, if f�x� " ker�θ�, then pf�x� � p

2
a�x�� �x2

�p�b�x� for some a�x�, b�x� "
Z�x�. In particular, p divides �x2

� p�b�x�, so since p is prime, p divides b�x�. Write
b�x� � pb

¬�x�. Then
f�x� � pa�x� � �x2

� p�b¬�x� " �p, x2
� b�.

Thus, we have proven that

�p, x2
� p� � ker�θ�.

In other words,

ker�π� 	 Z�x�«�p, x2
� p� 	 N.

Equivalently, we have a short exact sequence

0� N �M � N � 0

so by additivity of the length,

length�M� � 2 length�N� � 4.

□
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Exercise 5. ¹ Compute the length of the C�x, y, z�-module module

M � C�x, y, z�«�x3
� 3x

2
� 2xy, y

2
� 1, z

2024�.
Exercise 6. Let R be a Noetherian ring. Are the following rings Noetherian? Are they
Artinian?

(1) R�x, 1

x
� �� r<n

i��m aix
i
� ai " R,m, n " Nx.

(2) R�x1, x2, x3, ...�.
(3) R��x��, the ring of formal power series1 with coe�cients in R.

Hint: For an ideal I and each n " N, let In �� ran � ¿<�

i�n aix
i
" Ix. Then adapt

the proof of the Hilbert basis theorem.

(4) C
0�R�, the ring of continuous functions R� R with pointwise operations.

(5) R�x�«��x � 1�2x�.

Proof. (1) We will show that R�x, 1

x
� is isomorphic to a quotient of a polynomial ring. It

then follows that it is Noetherian by the Hilbert basis theorem (as Noetherianity is
preserved under quotients).
The isomorphism in question comes from the R-algebra homomorphism

ϕ � R�u, v�� R�x, 1x�
u( x, v (

1
x,

which exists by the universal property of R�u, v�. This is surjective as any element of
R�x, 1©x� can be written as some polynomial in x and 1

x
by de�nition. Thus it has

some kernel I, and hence R�x, 1

x
� 	 R�u, v�©I is Noetherian.

As a side note, we can go further, and identify the kernel kerϕ � I to be the ideal
�uv � 1�. For it is clear that uv � 1 " I, and suppose that g " kerϕ. Then we can use
elements of �uv�1� to cancel mixed terms, and so write g � g1�g2 where g1 " �uv�1�
and g2 � <i'0 aiu

i
�<j%0 bjv

j
for some ai, bj " R. But it is clear that g2 cannot be in

kerϕ unless all of its coe�cients are zero. So g � g1 " �uv � 1�.
Take R j 0 to be any Noetherian ring. There is an in�nite descending chain of

ideals in R�x, x�1� given by �x � 1� á ��x � 1�2� O ��x � 1�3� O .... We need to
prove that the containment is strict. To this end suppose that there exists a k % 0

such that ��x � 1�k� � ��x � 1�k�1�. Then there exists f " k�x, x�1� such that

�x � 1�k � f�x, x�1��x � 1�k�1. Write f�x, x�1� � <m&i&n aix
i
with m & n integers

and am, an j 0. Then there is a term of degree k � n � 1 with coe�cient an j 0 on
the right-hand side, and thus m & n $ 0 as the left-hand side has only terms of degree
less than or equal to k. But then there is a non-zero term of degree m $ 0 on the
right-hand side corresponding to amx

m
. This is not possible, since the left-hand side

has no non-zero term with negative degree. We conclude that f � 0, but this amounts

to a contradiction since �x� 1�k j 0 since it has non-zero coe�cients corresponding to

the terms x
k
and 1. Hence R�x, 1

x
� isn't Artinian.

1R��x�� � r<�i�0 aix
i

� ai " Rx, where multiplication and addition are de�ned formally, as what you

think they should be. These are purely formal objects: there is no requirement for any kind of convergence.
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(2) R�x1, x2, ...� is not Noetherian, as the ideal �x1, x2, ...� cannot be �nitely generated. It
is not Artinian (for any choice of R j 0), since it contains the strictly descending chain

�x1� á �x2
1� á �x3

1� á . . . .
(3) R��x�� is not Artinian (for any choice of R j 0), since it contains the strictly descending

chain �x� á �x2� á �x3� á . . . .
R��x�� is Noetherian, and the proof is a variant of the proof of the Hilbert basis

theorem.
To this end suppose I is an ideal of R��x��. For each integer n ' 0, let

In �� ran � ¿
�

=
i�n

aix
i
" Ix.

For each n, this is an ideal of R, and by multiplying each power series by x we see
that In N In�1 for each n. So by the ascending chain condition, there is M such that
In � In�1 for all n 'M .
Also, for each i & M , Ii is �nitely generated, so we may �x a �nite set rai,jx0&j&N

of generators for Ii (we take always the same number N of generators by repeating
elements if needed). For each 0 & i &M and 0 & j & N , �x fi,j " I such that

fi,j � ai,jx
i
� higher order,

which exsits by construction of Ii.
We claim that the the ideal J generated by the set rfi,jx0&i&M

0&j&N
is equal to I. Let

g � <�

k�0 bkx
k
" I. By construction of I0, we can �nd an element h0 " J having

the same term of order 0 as g: there exists an R-linear combination of a0,0, . . . , a0,N
equal to b0, and taking h0 to be the same R-linear combination of f0,0, . . . , f0,N will do.
Similarly, we can �nd an element h1 " J having the same term of order 1 as g � h0.
Iterating this procedure, we construct an element h � h0 �� � hM�1 " J such that
g � h has no terms of degree strictly smaller than M .
Now we proceed similarly, but with a slight modi�cation. As before, we can �nd
coe�cients c0,0, . . . , c0,N " R such that l0 � c0,0fM,0 ��� c0,NfM,N has the same term
of order M as g � h. Then, we can �nd c1,0, . . . , c1,N " R such that l1 � c1,0xfM,0 �

� � c1,NxfM,N (we added a factor x in there to make things of the correct order; in

the next step we will need a factor x
2
and so on) has same term of order M � 1 as

g � h � l0. We iterate this procedure inde�nitely, and for 0 & j & N de�ne the power

series cj � <k'0 ck,jx
k
, as well as l � c0fM,0 �� � cNfM,N " J . One can then show

by comparing coe�cients that g � h � l � 0. As h, l " J , we conclude g " J , and as
g " I was arbitrary, we obtain I � J . Hence I is �nitely generated, and thus R��x��
is Noetherian.

(4) C
0�R� is neither Artinian nor Noetherian. To this end de�ne In � rf " C�R� � f�x� �

0 for all x ' nx, where n " Z. It is clear that In L In�1. We need to show that the
containment is strict. To this end, de�ne for example the continuous function f by
f�x� � 0 for all x ' n� 1 and f�x� � x� �n� 1� for all x & n� 1, this is a well-de�ned
continuous function f " In�1 ¯ In. So �In�n"Z is a strictly increasing sequence of ideals
indexed by Z, showing that C

0�R� is neither Artinian nor Noetherian.
(5) The most e�cient solution is the following: it su�ces to notice that the dimension of

R�x�«��x � 1�2x� as an R-vector space is equal to 3 (the degree of the polynomial), so
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in particular it is �nite. As ideals of R�x�«��x � 1�2x� are in particular R-subspaces,
and �nite dimensional vector spaces obviously satisfy the ascending and descending

chain conditions, we obtain that R�x�«��x � 1�2x� is both Artinian an Noetherian.

□


