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Rings and modules Exercises

Sheet 12 - Solutions

Exercise 1. The goal of this exercise is to see that the statement of Exercise 8 is wrong
without the algebraically closed assumption.

(1) Let R � S be a morphism of commutative rings (thus making S an R-algebra), and
let I be an ideal of R�x1, . . . , xn�. Then we have an isomorphism of S-algebras

R�x1, . . . , xn�«I iR S 	 S�x1, . . . , xn�«�I�
�Hint: First show it for I � 0, and then deduce the general case using right exactness

of the tensor product. The case I � 0 can be handled by a direct computation, or by

showing that both sides satisfy the same universal property.�
(2) Show that

CiR C 	 C � C
and hence it is not a domain (but it is nevertheless reduced!)

(3) Show that

Fp�x�iFp�x
p� Fp�x� 	 Fp�x��t�«�t � x�p

which is not even reduced.

Proof. (1) First let us deal with the case I � 0.

Hands-on approach: There is a bilinear map

R�x1, . . . , xn� � S � S�x1, . . . , xn�
given �p, s�( sp, so by de�nition this induced a morphism

R�x1, . . . , xn�iR S � S�x1, . . . , Sn�
and it is staightforward to see that this is an S-alebra morphism. Thus we are left to
show that it is bijective. The point is that R�x1, . . . , xn� is free as an R-module, with

basis rxi11 �x
in
n xi1,...,in'0. Therefore, as an S-module,

R�x1, . . . , xn�iR S

is also free with basis B1 � rxi11 �x
in
n i 1xi1,...,in'0 (we are using that R iR S 	 S and

that tensor products commute with direct sums). On the other hand, S�x1, . . . , xn�
is free with basis B2 � rxi11 �x

in
n xi1,...,in'0, so since the maps R�x1, . . . , xn� iR S �

S�x1, . . . , xn� described before maps bijectively B1 to B2, we win.

Categorical approach: We will freely use the categorical language here (i.e. cate-
gories, functors, adjoints, universal properties). Given A a ring, we denote by AlgA the
category of A-algebras. We have the obvious forgetful functor AlgS � AlgR. Let us
show that �iR S de�nes a left adjoint.
Given A " AlgR, B " AlgS, we have to show that there is a natural bijection

HomAlgS
�AiR S,B�� HomAlgR

�A,B�
1
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Given f � A� B a map of R-algebras, de�ne

f
¬

� Ai S � R

by f
¬�a i s� � sf�a�, and conversely given a map f

¬

� A iR S � B of S-algebras,
de�ne f � A� B via f�a� � f ¬�ai 1�. We leave the fact that this gives a well-de�ned
bijection to the reader (note that we could replace the word "algebras" by "modules"
and this would work exactly the same way).
Note that if A is any ring, and B is an A-algebra,

HomAlgA
�A�x1, . . . , xn�, B� 	 n

5
i�1

B

by de�nition of a polynomial ring (we can send the xi's wherever we want, and this
de�nes a ring map form the polynomial algebra).
From the above discussion, we obtain that if T is any S algebra, we have a natural

bijection

HomAlgS
�R�x1, . . . , xn�iRS, T � 	 HomAlgR

�R�x1, . . . , xn�, T � 	 n

5
i�1

T 	 HomAlgS
�S�x1, . . . , xn�, T �

so both R�x1, . . . , xn�iR S and S�x1, . . . , xn� share the same universal property in the
category of S-algebras, so there is a natural isomorphism between these two objects.
To �nd it explicitly, we simply have to see what

id " HomAlgS
�S�x1, . . . , xn�, S�x1, . . . , xn��

corresponds to in HomAlgS
�R�x1, . . . , xn� iR S, S�x1, . . . , xn��. Unraveling the de�ni-

tions gives us that this morphism is exactly the one given with the previous strategy.

Now let us work out the general case (i.e. I is not necessarily 0). We have a short
exact sequence

0� I � R�x1, . . . , xn�� R�x1, . . . , xn�©I � 0

Tensoring by S gives the exact sequence

I iR S � R�x1, . . . , xn�iR S � R�x1, . . . , xn�©I iR S � 0

Note that the composition

I iR S � R�x1, . . . , xn�iR S 	 S�x1, . . . , xn�
simply sends <i pi i si to <i pisi, so by de�nition its image is �I�, whence we deduce
that

R�x1, . . . , xn�©I iR S 	 S�x1, . . . , xn�©�I�
It is striaghtforward to check that this map is not only an isomorphism of S-modules,
but actually S-algebras.

(2) Since C 	 R�x�©�x2 � 1�, we see by the previous point that

CiR C 	 R�x�©�x2 � 1�iR C 	 C�x�©�x2 � 1�
by the Chinese remainder theorem,

C�x�©�x2 � 1� � C�x�©�x � i� � C�x�©�x � i� 	 C � C



3

(3) Let us show the following result: let k be a �eld of characteristic p % 0 and a " k ¯ kp,
and let a

1©p
be a p'th root living in some higher extension L of k. Then

k�a1©p� 	 k�t�©�tp � a�
Proof. The only thing to show is that t

p
�a is irreducible, so let us write by contradiction

that t
p
� a � α�t�β�t�. Since in L, tp � a � �t� a1©p�p, we can write α�t� � �t� a1©p�n

and β�t� � �t � a1©p�m for some m � n � p. Therefore we get

k�t� # α�t� � tn � ntn�1a1©p � lower order terms

so since a
1©p

� k, we must have n � 0 " k, so since k has characteristic p either
n � 0 " Z or n � p " Z. In other words, either α�t� or β�t� is a unit, hence we
win. □

From the above, we deduce that

Fp�x�iFp�x
p�Fp�x� 	 Fp�xp��t�©�tp�xp�iFp�x

p�Fp�x� 	 Fp�x��t�©�tp�xp� � Fp�x��t�©�t�x�p
□

Exercise 2. Let M be an A-module, and let a be an ideal in A. Show that the following
are equivalent:

(1) M � 0,
(2) Mp � 0, for every prime ideal p N A,
(3) Mm � 0, for every maximal ideal m N A.

Moreover, suppose that M is a �nitely generated A-module, under this assumption prove
that M � aM if and only if Mm � 0 for all maximal ideals m satisfying a N m.

Proof. The implications �1� ¼ �2� ¼ �3� are obvious. Note also that by Exercise 7,
the implication �3� ¼ �2� is also straightforward: if �3� holds and p is any prime ideal,
then let m be a maximal ideal containing p. Set T � R � m and S � R � p so that T N S,
and de�ne xS N T�1

R as in Exercise 7. Then we have

Mp � S
�1
M 	 xS�1�T�1

M� � xS�1
Mm � 0,

as any localization of the zero module is the zero module. Thus �2� holds as well.
Now to prove �3�� �1�, assume by contradiction that M j 0 but that Mm � 0, for every
maximal ideal m. Then there exists x " M � r0x, and in particular Ann�x� j A. Consider
the inclusion Ax 0 M and let m be a maximal ideal of A containing Ann�x�. As localisa-
tion is exact, localisation at m preserves injectivity, so �Ax�m 0 Mm � 0 is still injective.
Therefore �Ax�m � 0, which implies in particular that x©1 is equal to 0 inside �Ax�m. By
de�nition, this means that there exists t " A � m such that tx � 0, which contradicts
Ann�x� N m. Hence we must have M � 0, and thus we proved the equivalence of the three
statements.

Now to the second part. We have M � aM if and only if MªaM � 0, which by the

above is equivalent to �MªaM�m � 0 for every maximal ideal m of A. By exactness of

taking localization (see Exercise 6.3 of sheet 11), we have �MªaM�m 	 Mmª�aM�m, and
notice that �aM�m can be naturally identi�ed with the submodule �aAm�Mm of Mm (as the
localization of the inclusion aM 0M at m has image �aAm�Mm).



4

Thus �MªaM�m is zero i� Mm � �aAm�Mm. If a is not contained in the maximal ideal m
then a contains a unit of Am and thus Mm � �aAm�Mm. Therefore, M � aM if and only if
Mm � �aAm�Mm for all maximal ideals m satisfying a N m. Finally, observe that if Mm then
trivially Mm � �aAm�Mm. On the other hand, if Mm � �aAm�Mm, then as a N m we also
have Mm � �mAm�Mm. By applying Nakayama's Lemma (Exercise 4.2 on sheet 9) to the
�nitely generated Am-module Mm and the local ring �Am,mAm�, this implies Mm � 0. So
Mm � �aAm�Mm for a N m if and only if Mm � 0. By combining all of the above, we hence
obtain that M � aM if and only if Mm � 0 for all maximal ideals m with a N m. □

Exercise 3. Let R � F �x�, where F is a �eld.

(1) If F is algebraically closed, then show that for every prime ideal p of R, either Rp 	

F �x� or Rp 	 F �x��x�, where these isomorphisms are isomorphisms of F -algebras.
Show that the above two cases are not isomorphic.

(2) If F � R, then show that up to ring isomorphism there are three possibilities for Rp,
where p is a prime ideal of F �x�.�Hint: To tell the three cases apart, consider the residue �eld, to show that there are
only three cases, apply linear transformations to x.�

(3) Show that if F is algebraically closed, then F �x, y� has in�nitely many prime ideals p
for which F �x, y�p are pairwise non-isomorphic F -algebras. For this, you can use the
following theorem of algebraic geometry:

Theorem. There exists a sequence of irreducible polynomials �fd�d"N¯r0,2x in F �x, y�
such that fd is of degree d and such that the �elds Frac �F �x, y�«�fd�� are pairwise

non-isomorphic as F -algebras.

Proof. Let us �rst prove a useful result which we will use throughout this solution.

Lemma 0.1. Let R, S be two local rings with respective maximal ideals mR and mS. If

R 	 S, then we also have an isomorphism of residue �elds R©mR 	 S©mS.

Proof. Recall that given a local ring T , its maximal ideal is exactly the set of non-invertible
elements of T , which is certainly a notion preserved by isomorphisms.
Thus, in our case, an isomorphism θ � R � S must satisfy θ

�1�mS� � mR, so it induces
an isomorphism of residue �elds. □

(1) Every non-zero prime ideal of F �x� is principal of the form �x � a� since F is alge-
braically closed. We have F �x��0� � F �x�, hence it is su�cient to prove that there is
a F -algebra isomorphism F �x��x�a� 	 F �x��x�b� for all a, b " F . First, consider the
F -algebra endomorphism ϕa,b � F �x�� F �x� obtained by mapping x to x�a�b. Then

the composition F �x� ϕa,b

� F �x�� F �x��x�b� maps every element not divisible by x� a

to a unit in F �x��x�b�, and thus induces an F -algebra map ϕa,b � F �x��x�a� � F �x��x�b�,
which sends f�x�©g�x� to f�x� a� b�©g�x� a� b�. It is thus clear that ϕa,b and ϕb,a

are mutually inverse, and hence F �x��x�a� 	 F �x��x�b� for all a, b " F . Finally, there
is an inclusion F �x��x� � F �x�, but the two rings aren't isomorphic as x " F �x��x� is
a non-zero non-unit, but F �x� is a �eld.

(2) There are three options for prime ideals in R�x� we have that p � 0 or p is prin-
cipal generated by �x � a� for a " R or p is principal generated by a degree two
polynomial with no real roots. With the same proof as in the previous point one has
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R�x��x�a� 	 R�x��x�b� for all a, b " R�x�. Now let x
2
� bx � c be a monic quadratic

polynomial without real roots (we can assume monicity without loss of generality).

That is, we have d
2
�� c � b

2©4 % 0. Then the linear change of coordinates where x is
replaced by dx� e where e � �b©2 transforms x

2
� bx� c into d

2�x2 � 1�. Another way
of putting this, is that under the R-agebra map ϕ � R�x� � R�x� which sends x to
dx� e, the polynomial x

2
� bx� c is mapped to d

2�x2� 1�. Therefore, the composition

R�x� ϕ
� R�x�� R�x�d2�x2

�1� maps elements outside of �x2�bx�c� to units, and thus we
obtain an induced map of R-algebras ϕ � R�x��x2

�bx�c� � R�x��d2�x2
�1�� � R�x��x2

�1�.
By performing the inverse linear substitution (i.e. mapping x to �x � e�©d) one

can construct an inverse to ϕ with the same argument, and thus we obtain that
R�x��x2

�bx�c� 	 R�x��x2
�1� for all quadratic irreducible polynomials x

2
� bx� c " R�x�.

So to conclude, we need to show that R�x�, R�x��x� and R�x��x2
�1� are pairwise non-

isomorphic. Notice that x " R�x��x� and x2 � 1 " R�x��x2
�1� are non-zero non-units,

and thus R�x� is not isomorphic to R�x��x� nor to R�x��x2
�1�. Now the residue �eld

of R�x��x�, i.e. R�x��x�«x � R�x��x� is, by Exercise 6.4 on sheet 11, isomorphic to

Frac �R�x�«�x�� 	 R. By the same argument, the residue �eld of R�x��x2
�1� is iso-

morphic to Frac �R�x�«�x2 � 1�� 	 Frac�C� � C. As R ©	 C we conclude that R�x��x�
and R�x��x2

�1� are non-isomorphic.
(3) Let �fd�d be as in the theorem; we will show that �F �x, y��fd��d are pairwise non-

isomorphic for d " N ¯ r0, 2x. Suppose that there is an isomorphism ϕ � F �x, y��fd� �
F �x, y��fd¬� for some d, d

¬

. Then the residue �elds must be isomorphic too. However
recall that in general, given a ring R and a prime ideal p, the maximal ideal of Rp is
pRp and the residue �eld is isomorphic to Frac�R©p�.
Using this fact in our case contradicts the choices of fd and fd¬ .

□

Exercise 4. Let F be an algebraically closed �eld.

(1) List the prime ideals of R � F �x, y�«�xy�.�Hint: Consider the implications of a containment xy " p, for a prime ideal p. Consider
the projections R � Rª�x� and R � Rª�y� and use that you know the prime ideals
of F �y� and F �x�.�

(2) Show that for all prime ideals p of R, Rp falls into three cases up to F -algebra isomor-
phism, one which is a �eld, one which is a domain but not a �eld and one which is not
a domain.

Proof. (1) The prime ideals of R � F �x, y�«�xy� corresponds to prime ideals inside F �x, y�
containing xy. If xy " p for p prime, then either �x� N p or �y� N p. Suppose �x� N p,

then the image q of p under the projection F �x, y� � F �x, y�«�x� 	 F �y� is prime

(where the last isomorphism is given by setting x to 0). As F is algebraically closed, q
must be either �0�, or of the form q � �y�b� for some b " F . As p is the preimage of q,
we obtain that p is either equal to �x�, or equal to �x, y � b�, and it is straightforward
to see that any such ideal is prime. By doing the same argument where the roles of x
and y are swapped, we hence conclude that prime ideals of F �x, y� containing xy are
precisely �x�, �y�, �x� a, y� for a " F and �x, y� b� for b " F . Hence the prime ideals
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of R are precisely �x�, �y�, �x � a, y� for a " F and �x, y � b� for b " F , where we use
a to denote the class of an element.

(2) For this exercise, it is useful to know (and prove) the following lemma.

Lemma 1. Let R be a ring with multiplicative subset T and ideal I. Let S � RªI
and let T be the image of T under R� S. Then there is a natural ring isomorphism

T
�1
S 	 T

�1
R¬I � T�1

R.

Proof. Consider the composition R � T
�1
R � T

�1
R¬I � T�1

R. As every element

of I is mapped to 0, this induces a map S � T
�1
R¬I � T�1

R which sends r � I to
r

1
� I �T

�1
R. In particular, let t " T be arbitrary, and write t � t� I for a t " T . Then

t is mapped to t

1
� I � T

�1
R, which has inverse 1

t
� I � T

�1
R. Hence every element of

T is mapped to a unit, and thus we obtain a ring map T
�1
S � T

�1
R¬I � T�1

R, given

by sending r�I

t�I
(with t " T ) to r

t
� I � T

�1
R.

On the other hand, consider the composition R � S � T
�1
S. Then an element t " T

is mapped to �t�I�©1, which is a unit since t�I " T . Hence we obtain an induced map

T
�1
R � T

�1
S sending r

t
to r�I

t�I
. Notice that every element of the form r©1 with r " I

is mapped to 0 by this mapped, and thus the ideal generated by elements of this form,

i.e. I � T
�1
R, is in the kernel. Hence we obtain a map T

�1
R¬I � T�1

R � T
�1
S which

maps r

t
� I � T

�1
R to r�I

t�I
. It is then easy to see that this is inverse to the morphism

constructed in the previous paragraph. □

Now to the exercise. By the above Lemma, we have

�F �x, y�«�xy���x� 	 �F �x, y� ¯ �x���1F �x, y�¬�xy� � �F �x, y� ¯ �x���1F �x, y� �
� F �x, y��x�«x � F �x, y��x� 	 Frac �F �x, y�«�x�� 	 F �y�

where in the second to last isomorphism we Exercise 6.4 on sheet 11. By swapping the
roles of x and y, one obtains R�y� 	 F �x�.
Now let b " F ¯ r0x, then

�F �x, y�«�xy���x,y�b� 	 �F �x, y� ¯ �x, y � b���1F �x, y�¬�xy� � �F �x, y� ¯ �x, y � b���1F �x, y� �
� F �x, y��x,y�b�«x � F �x, y��x,y�b� 	 F �y��y�b�

where the last isomorphism is induced by sending x to 0 (or identifying F �y� �

F �x, y�«�x� and using the Lemma). Again by swapping the roles of x and y we

obtain �F �x, y�«�xy���x�a,y� 	 F �x��x�a� for all a " F ¯ r0x. These are all isomorphic

by the proof of point Exercise 3.1, and are a domain which isn't a �eld.

Finally, �F �x, y�«�xy���x,y� is not a domain, since neither x©1 nor y©1 are zero, but
their product is 0.
To sum up, up to a linear coordinate change we have Rp 	 F �y� a �eld, Rp 	 F �y��y�

which is a domain but not a �eld or Rp � �F �x, y�©�xy���x,y� which is not a domain.
□
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Exercise 5. Let R be a ring.

(1) Let T N R a multiplicatively closed subset of R. Let q be a prime ideal of T
�1
R. Let

q
c
be the contraction of q under R � T

�1
R. Prove that ht�q� � ht�qc�.

(2) Let p be a prime ideal of R. Prove that ht�p� � dimRp.

Proof. The proof consists of the following steps based on the observation that both heights
and dimensions are de�ned in terms of chains of ideals.

(1) Prime ideals of T
�1
R are in one-to-one correspondence with prime ideals of R that

do not intersect T . A strictly increasing chain of prime ideals ending in q induces a
strictly increasing chain of prime ideals ending in q

c
by contraction. Conversely, if

p N q
c
is prime, then in particular it must avoid T (as otherwise q would contain a

unit), and thus in a strictly increasing chain of prime ideals ending in q
c
induces a

strictly increasing chain of prime ideals ending in p by extension.
(2) Prime ideals of Rp are in an inclusion preserving one-to-one correspondence with prime

ideals of R avoiding R ¯ p, i.e. contained in p.

□

Exercise 6. Let S � R be a morphism of rings. Show that a prime ideal p of S is the
contraction of a prime ideal of R if and only if p

ec
� p.�Hint: For one direction use ideas from the proof of Going-Up Theorem (Proposition 9.4.2

of the lecture notes).�
Proof. Recall that if p is an ideal of S and q is an ideal of R then there are always con-
tainments q

ce
N q and p

ec
O p. If there exists a prime ideal q of R such that p � q

c
, then

p
e
� q

ce
N q and therefore p

ec
N q

c
� p. Since the inclusion p N p

ec
holds always this shows

that p
ec
� p.

Conversely, denote Rp �� �ϕ�S � p���1R (this is a common notation so remember it) where
ϕ � S � R is the ring morphism from the statement. If p

ec
� p holds, then the ideal p

e

doesn't meet the image of S�p in R. Thus p
e
Rp is a proper ideal of Rp. Let m be a maximal

ideal of Rp that contains p
e
Rp. Let q N R be the contraction of m along R � Rp. Then

q is a prime ideal of R that doesn't intersect the image of S � p in R, and p
e
N q. Hence,

p � p
ec
N q

c
, and q

c
N p as q

c
= �S � p� � o. □

Exercise 7. Let R be a ring, letM be an R-module and let T, S N R be two multiplicatively
closed subsets of R. De�ne ST �� rst ¶ s " S, t " Tx and xS �� rs©1 ¶ s " Sx N T�1

R.

(1) Show that ST and xS are multiplicatively closed subsets of R resp. T
�1
R.

(2) Show that there exists a ring morphism xS�1�T�1
R�� �ST ��1R sending �r©t�©�s©1� "

xS�1�T�1
R� to r©�st� " �ST ��1R. Show further that this is an isomorphism.

(3) Show that xS�1�T�1
M� and �ST ��1M are isomorphic as �ST ��1R-modules, where the�ST ��1R-module structure of xS�1�T�1

M� is provided via the isomorphism of the pre-
vious point.

(4) Show that if T N S then ST � S, and formulate the results of points (2) and (3) in
this case.

Proof. (1) Note that 1 " S = T and thus 1 � 1 � 1 " ST . Furthermore, if s, s
¬

" S

and t, t
¬

" T then �st��s¬t¬� � �ss¬��tt¬� " ST as ss
¬

" S and tt
¬

" T . Hence ST is
multiplicatively closed. As for xS, note that if ϕ � R � R

¬

is any ring morphism, then
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ϕ�S� N R¬

is multiplicatively closed as ϕ�1� � 1 and ϕ preserves multiplication. So as
xS is the image of S under the localisation morphism R � T

�1
R, we conclude that it is

a multiplicatively closed subset of T
�1
R.

(2) Denote by ιT � R � T
�1
R, ιST � R � �ST ��1R and ι

xS � T
�1
R � xS�1�T�1

R� the
localization morphisms. As T N ST , the morphism ιST sends every element of T to
a unit. Hence by the universal property of localization, there exists a ring morphism
ιT,ST � T

�1
R � �ST ��1R such that ιT,ST ` ιT � ιST . This implies that any r

t
"

T
�1
R is mapped to r

t
" �ST ��1R. Now let s©1 " xS be arbitrary. Then ιT,ST sends

s©1 to s©1 " �ST ��1R, which is a unit (with inverse 1©s). Hence by the universal

property of localization, there exists a ring morphism ϕ � xS�1�T�1
R� � �ST ��1R

such that ϕ ` ι
xS � ιT,ST . This implies that ϕ sends any �r©t�©�s©1� " xS�1�T�1

R� to

ιS,ST �r©t��ιS,ST �s©1���1 � r©�ts� " �ST ��1R, so this is the morphism we sought to
construct.
To prove that ϕ is an isomorphism, we construct an inverse. Note that ι

xS ` ιT �

R � xS�1�T�1
R� sends any st " ST to �st©1�©�1©1�, which has inverse �1©t�©�s©1� "

xS�1�T�1
R�. Indeed, we have

��st
1

 © �1

1


 � ��1

t

 © �s

1
	
 � ��s

1
	 © �s

1
		 � 1

xS�1�T�1R�.

Hence by the universal property of localization, there exists a ring morphism ψ ��ST ��1R � xS�1�T�1
R� such that ψ`ιST � ι xS`ιT . This implies that any r©�st� " xS�1

R
is mapped to

ψ�r©�st�� � �ι
xS ` ιT �r�� � �ι xS ` ιT �st���1 � ��r

1
	 © �1

1


 � ��1

t

 © �s

1
	
 � ��r

t
	 © �s

1
		 .

Hence ϕ and ψ are mutually inverse, and thus isomorphisms.
(3) The structure of xS�1�T�1

M� as an �ST ��1R-module is given by the formula

r
st
� ��m

t¬
	 © �s¬

1
�� �� ψ � r

st
	 ��m

t¬
	 © �s¬

1
�� � ��rm

tt¬
	 © �ss¬

1
�� .

Tensor approach: Note that by Exercise 5 of Sheet 11, we have

�ST ��1M 	 �ST ��1RiR M

and

xS�1�T�1
M� 	 xS�1�T�1

R�iT�1R �T�1
RiR M�.

Note that we have

xS�1�T�1
R�iT�1R �T�1

RiR M� 	 � xS�1�T�1
R�iT�1R T

�1
R�iR M 	

	 xS�1�T�1
R�iR M 	 �ST ��1RiR M,

at the very least as R-modules. By following the chain of isomorphisms, the above
isomorphism is given on simple tensors by mapping �r©t�©�s©1� i �r¬©t¬ i m� to��rr¬�©�tt¬s��im. It is then straightforward to check that this map is in fact �ST ��1R-
linear, and thus an isomorphism of �ST ��1R-modules.
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Pure localization approach: Denote by ι
M
T � M � T

�1
M , ι

M
ST � M � �ST ��1M

and ι
M
xS
� T

�1
M � xS�1�T�1

M� the localization morphisms. Recall that xS�1�T�1
M�

is naturally an R-module, via the localization morphisms (i.e. multiplication by r
is multiplication by �r©1�©�1©1�). Notice that multiplication by any st " ST on
xS�1�T�1

M� is invertible, with inverse being multiplication by �1©t�©�s©1�. Hence
by the universal property of localization of a module (see the solution of Exercise 1

on Sheet 10), xS�1�T�1
M� naturally has the structure of an �ST ��1R-module via the

formula

r
st
� ��m

t¬
	 © �s¬

1
�� �� ��r©1�©�1©1�� � ���st�©1�©�1©1���1 � ��m

t¬
	 © �s¬

1
�� � ��rm

tt¬
	 © �ss¬

1
�� ,

and there exists an �ST ��1M -module morphism ψ
M
� �ST ��1M � xS�1�T�1

M� such

that ψ
M
` ι

M
ST � ι

M
xS
` ι

M
T . Notice that the �ST ��1M -module structure on xS�1�T�1

M�
is the same as the one de�ned via the isomorphism of the previous point, and that ψ

M

maps an element m©�st� to �m©t�©�s©1�.
Now either one constructs an inverse to ψ

M
with a similar procedure, or one proves di-

rectly that ψ
M
is an isomorphism. We will do the latter for once: if y �� �m©t�©�s©1� "

xS�1�T�1
M� is arbitrary, then ψM

maps x �� m©�ts� to �m©t�©�s©1�, so ψM
is surjec-

tive. Finally, suppose that ψ
M

maps some m©�st� " �ST ��1M to 0. Then there exists
s
¬©1 " xS such that �s¬©1��m©t� � 0 inside T

�1
M . Therefore, there exists t

¬

" T such
that t

¬

s
¬

m � 0 inside M . But then as t
¬

s
¬

" S, this means m©�st� � 0 inside �ST ��1M .

Thus ψ
M

is also injective, and hence an isomorphism.
(4) As 1 " T we have S N ST . On the other hand, we have ST N SS N S as S is

multiplicatively closed, so ST � S. Hence point (2) gives xS�1�T�1
R� 	 S�1

R as rings,

and point (3) gives xS�1�T�1
M� 	 S�1

M as S
�1
R-modules.

□

Exercise 8. In Exercise 6 of sheet 10, we saw how to construct the tensor product of two
R-algebras. The goal is to show the following result:

Proposition 0.2. Let k be an algebraically closed �eld, and let R, S two �nitely generated

k-algebras which are domains. Then Rik S is again a domain.

During this exercise, you can freely use the following results (which you will see shortly) :

` Nullstellensatz (Theorem 6.5.4 from the notes)
` For any �nitely generated k-algebra T and any maximal ideal m, the composition
k � T � T©m is an isomorphism (see the proof of the weak Nullstelensatz, which is
Theorem 6.2.2 in the notes).

Proceed as follows:

(1) Let T be a �nitely generated k-algebra which is a domain, and let a1, . . . as " T be
non-zero. Show that there is a maximal ideal m of T such that ai � m for all i.�Hint : write T as a quotient of a polynomial ring, and use Nullstellensatz.�

(2) Show that any element in Rik S can be written as

=
i

ai i bi
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with the bi's linearly independent over k.
(3) Assume that

�=
i

ai i bi� � �=
j

a
¬

j i b
¬

j� � 0

where both families �bi�i and �b¬j�j are linearly independent. Let m be a maximal ideal

not containing any of the ai, a
¬

j.
Show by applying the ring map

Rik S � R©mik S 	 S

that one of the factors must be zero, and hence conclude that Rik S is a domain.

Proof. (1) We give two proofs of this part: one uses the intended way (which is more
�geometric�), while the other one works over arbitrary �elds (and is more �algebraic�).
Note that in both cases, we may assume s � 1 (we will write a � a1). Indeed, since

T is a domain,4i ai j 0, so we reduce to the case s � 1 since maximal ideals are prime.

Intended way: Let us write T � k�x1, . . . , xn�©I (this is possible by de�nition of a
�nitely generated k-algebra). We need to �nd a maximal ideal in T which does not
contain a. Let b " k�x1, . . . , xn� be a lift of a. By the correspondence theorem, we
need to �nd a maximal ideal in k�x1, . . . , xn� which contains I but not b.
By Nullstellensatz, this is equivalent to �nding some x " k

n
such that x " V �I� but

x � V �b�. Indeed, if we had such an element, the maximal ideal m �� I�rxx� would do
the job by Nullstellensatz.
If such an x did not exist, then we would have V �I� N V �b�. Applying Nullstensatz

would then give

b "
Õ�b� � I�V �b�� N I�V �I�� � Ó

I � I

where the last equality holds since I is prime (T � k�x1, . . . , xn�©I is a domain). How-
ever, b " I implies that a � 0 (recall b is a lift of a " k�x1, . . . , xn�©I) which contradicts
the hypothesis.

More general way: Let us show the following result:

Lemma 0.3. Let k be an arbitrary �eld, and let f � T � S be a morphism of �nitely

generated k-algebras. Then for all maximal ideal m N S, f
�1�m� is maximal.

Proof. The map f induces an injection

T©f�1�m�� S©m
Since S©m is a �eld, we have

trdegk�S©m� � dim�S©m� � 0

Since T©f�1�m� N S©m, we also have trdegk�T©f�1�m�� � 0, and hence dim�T©f�1�m�� �
0. This means by de�nition that any prime ideal of dim�T©f�1�m�� is maximal. Since
T©f�1�m� is a domain (the preimage of a prime ideal is always a prime ideal!), we

deduce that �0� is maximal, so T©f�1�m� is a �eld (i.e. f
�1�m� is maximal). □
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Remark 0.4. This lemma above is completely wrong for non-�nitely generated k-
algebras! For example k�x� N k�x� gives a counterexample (�0� is maximal in k�x�,
but not in k�x�).
Now, the point is that Ta is again a �nitely generated k-algebra! (indeed, we have

Ta 	 T �x�©�xa � 1�). Thus, given any maximal ideal m N Ta, its preimage m
c
will be

maximal in T by the lemma above. Since it cannot contain a, we win.
(2) Let <i"I ri i si " R ik S. If the elements si are linearly independent, we are �ne. If

not, we can write sj � <ijj αisi, we

=
i"I

ri i si �=
ijj

�ri i si� � rj i=
ijj

αisi �=
ijj

�ri i si� �=
ijj

�αirj�i si �=
ijj

�ri � αirj�i si

Note that in the right-hand side, sj never appears. Since the index set I is �nite, this
process has to �nish at some point.

(3) Let us show that Rik S is a domain. Assume that

�=
i

ai i bi� � �=
j

a
¬

j i b
¬

j� � 0

and assume that both families �bi�i and �b¬j�j are linearly independent (see the previ-
ous point). By contradiction, further assume that both elements above are non-zero.

Therefore, ai1 j 0 and a
¬

j1 j 0 for some i1, j1. By the �rst point, there exists a maximal
ideal m be a maximal ideal not containing ai1 and aj1 .
Since k is algebraically closed, R©m 	 k by the weak Nullstellensatz. Let θ � R©m�

k denote an isomorphism. Thus there is a ring map RikS � S is given by<i riisi (
<i θ�ri�si. Applying our ring map above gives the element

�=
i

θ�ai�bi� � �=
j

θ�a¬j�bj� � 0

Since S is a domain, one of the two terms above is 0 (without loss of generality we may
assume <i θ�ai�bi � 0).
Since the bi's are linearly independent, we have θ�ai� � 0 for all i. However, θ is an

isomorphism, so ai1 � 0. This is impossible since ai1 � m by assumption.
□


