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Rings and modules Exercises
Sheet 12 - Solutions

Exercise 1. The goal of this exercise is to see that the statement of Exercise 8 is wrong
without the algebraically closed assumption.

(1) Let R = S be a morphism of commutative rings (thus making S an R-algebra), and
let I be an ideal of R[x1,...,x,]. Then we have an isomorphism of S-algebras

R[a:l,...,:cn]/]®RS§ S[:(Jl,...,:z:n]/([)

[ Hint: First show it for I =0, and then deduce the general case using right exactness
of the tensor product. The case I = 0 can be handled by a direct computation, or by
showing that both sides satisfy the same universal property.]

(2) Show that

CerC=CxC

and hence it is not a domain (but it is nevertheless reduced!)
(3) Show that

F,(7) ®p, (or) Fp(z) = IFzn(x)[t:l/(t - )

which is not even reduced.

Proof. (1) First let us deal with the case I = 0.

Hands-on approach: There is a bilinear map
R[xy,...,x,] XS - S[x1,...,2,]
given (p,s) — sp, so by definition this induced a morphism
R[zy,...,2,]®r S = S[z1,...,5,]

and it is staightforward to see that this is an S-alebra morphism. Thus we are left to
show that it is bijective. The point is that R[zy,...,,] is free as an R-module, with

. 1 )
basis {z'++-@;' }i, i s0. Therefore, as an S-module,
Rlxy,...,7,] ®r S

is also free with basis B; = {xlllx;" ® 1};, . i s0 (we are using that R®z S = S and

that tensor products commute with direct sums). On the other hand, S[zy,...,z,]
is free with basis By = {@y' =2, }i, i s0, SO since the maps R[zy,...,7,] ® S —
S[xy,...,x,] described before maps bijectively B; to By, we win.

Categorical approach: We will freely use the categorical language here (i.e. cate-
gories, functors, adjoints, universal properties). Given A a ring, we denote by Alg, the
category of A-algebras. We have the obvious forgetful functor Algg — Algp. Let us
show that — ® zp S defines a left adjoint.

Given A € Algg, B € Algg, we have to show that there is a natural bijection

Homyy, (A ®% S, B) = Homy,,, (A, B)
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Given f: A - B a map of R-algebras, define
fftA® S > R

by f'(a ® s) = sf(a), and conversely given a map f : A®p S — B of S-algebras,
define f : A - B via f(a) = f'(a®1). We leave the fact that this gives a well-defined
bijection to the reader (note that we could replace the word "algebras" by "modules"
and this would work exactly the same way).

Note that if A is any ring, and B is an A-algebra,

Homyy, (Alzy,....2,]. B) = [ [ B
i=1

by definition of a polynomial ring (we can send the xz;’s wherever we want, and this
defines a ring map form the polynomial algebra).
From the above discussion, we obtain that if 7" is any S algebra, we have a natural
bijection
Hom g, (Rl21, ..., 2,185S, T) = Hompy, (R, ..., 2,1, T) = | [T = Hompy (S[ay, ..., 2,],T)
i=1
so both R[zy,...,2,]®z S and S[x,...,x,] share the same universal property in the

category of S-algebras, so there is a natural isomorphism between these two objects.
To find it explicitly, we simply have to see what

id € Hompy, (S[24,...,2,],S[21,...,2,])

corresponds to in Homyy, (R[24,...,2,] ®% S, S[zy,...,2,]). Unraveling the defini-
tions gives us that this morphism is exactly the one given with the previous strategy.

Now let us work out the general case (i.e. I is not necessarily 0). We have a short
exact sequence

0—-1- R[x,...,2,] = R[z1,...,2,]/T =0
Tensoring by S gives the exact sequence
I®rS — R[xy,...,2,]®r S = R[xy,...,2,]/I®r S = 0
Note that the composition
I®rS — R[xy,...,2,]®p S = S[x;,...,2,]

simply sends ) ,p; ® s; to ), p;s;, so by definition its image is (I'), whence we deduce
that
R[xy,...,2,]/[I®pr S = S[xy,...,x,]/(])
It is striaghtforward to check that this map is not only an isomorphism of S-modules,
but actually S-algebras.
(2) Since C = R[z]/(2” + 1), we see by the previous point that

C®y C=R[z]/(z" +1) ® C = C[z]/(z" + 1)
by the Chinese remainder theorem,

C[z]/(z” + 1) = C[2]/(x + i) X C[z]/(z = i) = C x C
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(3) Let us show the following result: let k be a field of characteristic p > 0 and a € k \ £,
and let a'/” be a p’th root living in some higher extension L of k. Then

k(') = k[t]/ (" = a)

Proof. The only thing to show is that ¢’ —a is irreducible, so let us write by contradiction
that * — a = a(t)B8(t). Since in L, t* —a = (t — a'/")?, we can write a(t) = (¢ - atryn
and B(t) = (t — a'™")™ for some m + n = p. Therefore we get

k[t] 3 a(t) =t" - nt" '’ + lower order terms
so since a'? ¢ k, we must have n = 0 € k, so since k£ has characteristic p either
n=0¢€Zorn =p € Z In other words, either a(t) or S(¢) is a unit, hence we
win. 0

From the above, we deduce that

Fy(2)®r, (o) Fp(2) = Fy(2")[t]/ (1" =2") @, o)y (2) = F,(x)[t]/ (' =2") = F,(2)[t]/ (t-2)"
U

Exercise 2. Let M be an A-module, and let a be an ideal in A. Show that the following
are equivalent:

(1) M =0,

(2) M, =0, for every prime ideal p € A,

(3) M, =0, for every maximal ideal m € A.
Moreover, suppose that M is a finitely generated A-module, under this assumption prove
that M = aM if and only if M, = 0 for all maximal ideals m satisfying a € m.

Proof. The implications (1) = (2) = (3) are obvious. Note also that by Exercise 7,
the implication (3) == (2) is also straightforward: if (3) holds and p is any prime ideal,
then let m be a maximal ideal containing p. Set T'= R\ m and S = R\ p so that T'c S,
and define S € T™'R as in Exercise 7. Then we have

M,=S8"Mz=z=5YT"'M)=5"M, =0,

as any localization of the zero module is the zero module. Thus (2) holds as well.

Now to prove (3) = (1), assume by contradiction that M # 0 but that M, = 0, for every
maximal ideal m. Then there exists x € M \ {0}, and in particular Ann(xz) # A. Consider
the inclusion Az — M and let m be a maximal ideal of A containing Ann(x). As localisa-
tion is exact, localisation at m preserves injectivity, so (Az), <= M, = 0 is still injective.
Therefore (Ax), = 0, which implies in particular that z/1 is equal to 0 inside (Az),. By
definition, this means that there exists ¢ € A \ m such that tz = 0, which contradicts
Ann(z) € m. Hence we must have M = 0, and thus we proved the equivalence of the three
statements.

Now to the second part. We have M = aM if and only if M/aM = 0, which by the
above is equivalent to (M [q)f), = 0 for every maximal ideal m of A. By exactness of
taking localization (see Exercise 6.3 of sheet 11), we have (M/aM)m = Mm/(aM)m, and
notice that (aM ), can be naturally identified with the submodule (aA,, )M, of M, (as the
localization of the inclusion aM < M at m has image (aA,)M,y).



Thus (M [ q0r),, is zero iff My, = (aAy)My,. If a is not contained in the maximal ideal m
then a contains a unit of A, and thus M, = (aA,)M,. Therefore, M = aM if and only if
M, = (aAy) M, for all maximal ideals m satisfying a € m. Finally, observe that if M,, then
trivially M,, = (aAn,)M,. On the other hand, if M, = (aA,)M,, then as a € m we also
have M, = (mA,)M,. By applying Nakayama’s Lemma (Exercise 4.2 on sheet 9) to the
finitely generated A,-module M, and the local ring (A, mA,,), this implies M, = 0. So
M, = (aAy)M,, for a € m if and only if M, = 0. By combining all of the above, we hence
obtain that M = aM if and only if M,, = 0 for all maximal ideals m with a € m. U

Exercise 3. Let R = F[z], where F is a field.

(1) If F' is algebraically closed, then show that for every prime ideal p of R, either R, =
F(xz) or R, = F[x](,), where these isomorphisms are isomorphisms of F-algebras.
Show that the above two cases are not isomorphic.

(2) If F = R, then show that up to ring isomorphism there are three possibilities for R,
where p is a prime ideal of F[z].

[ Hint: To tell the three cases apart, consider the residue field, to show that there are
only three cases, apply linear transformations to . ]

(3) Show that if F'is algebraically closed, then F[z,y] has infinitely many prime ideals p
for which F[z,y], are pairwise non-isomorphic F-algebras. For this, you can use the
following theorem of algebraic geometry:

Theorem. There exists a sequence of irreducible polynomials ( fq)aem\o23 in Flx,y]

such that f; is of degree d and such that the fields FraC(F[xay]/(fd)) are pairwise
non-isomorphic as F'-algebras.

Proof. Let us first prove a useful result which we will use throughout this solution.

Lemma 0.1. Let R, S be two local rings with respective mazximal ideals mp and mg. If
R =S, then we also have an isomorphism of residue fields R/mp = S [mg.

Proof. Recall that given a local ring 7', its maximal ideal is exactly the set of non-invertible
elements of T, which is certainly a notion preserved by isomorphisms.

Thus, in our case, an isomorphism 6 : R — S must satisfy 6~ (mg) = mp, so it induces
an isomorphism of residue fields. O

(1) Every non-zero prime ideal of F[z] is principal of the form (z — a) since F is alge-
braically closed. We have F[xz]y = F'(x), hence it is sufficient to prove that there is
a F-algebra isomorphism F[x]—q) = F[2]w-p for all a,b € F. First, consider the
F-algebra endomorphism ¢, : F[z] —= F[x] obtained by mapping = to x+a—>b. Then

the composition F[z] oy F[z] = F[x](-p) maps every element not divisible by = — a
to a unit in F[x](,_p), and thus induces an F-algebra map % P Fla]g—ay = Fl2])(2-0)
which sends f(z)/g(z) to f(z +a—"b)/g(x+ a—D>). It is thus clear that ¢,; and ¢,
are mutually inverse, and hence F[z],—o) = F[2]—p for all a,b € F. Finally, there
is an inclusion F[z],y = F(x), but the two rings aren’t isomorphic as « € F[z](,) is
a non-zero non-unit, but F(z) is a field.

(2) There are three options for prime ideals in R[] we have that p = 0 or p is prin-
cipal generated by (z — a) for @ € R or p is principal generated by a degree two
polynomial with no real roots. With the same proof as in the previous point one has
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R[z](z-a) = R[2](z—py for all a,b € R[z]. Now let 2° 4 br + ¢ be a monic quadratic
polynomial without real roots (we can assume monicity without loss of generality).
That is, we have 4 i=c— b2/4 > 0. Then the linear change of coordinates where x is
replaced by dz + e where e : —b/2 transforms z° + bz + ¢ into d*(2” + 1). Another way
of putting this, is that under the R-agebra map ¢ : R[z] — R[x] which sends z to
dx + e, the polynomial z° + bz + ¢ is mapped to d°(z” + 1). Therefore, the composition

R[z] 4 R[x] = R[x]s2(,2+41) maps elements outside of (z*+bx+c) to units, and thus we
obtain an induced map of R-algebras ¢ : Rlz]w24be+e) = Rlz]a2@2+1)) = Rlz]z241)-
By performing the inverse linear substitution (i.e. mapping z to (z — €)/d) one
can construct an inverse to ¢ with the same argument, and thus we obtain that
R[&](z2+br+e) = R[2](z241) for all quadratic irreducible polynomials 22 +br+ce R[z].
So to conclude, we need to show that R(z), R[z],) and R[] 2,1y are pairwise non-
isomorphic. Notice that x € R[z],) and P +1€ R[x](;241) are non-zero non-units,
and thus R(x) is not isomorphic to R[z](,) nor to R[z](,241). Now the residue field
of R[x],, ie. R[x](x)/x ‘R[] I8, by Exercise 6.4 on sheet 11, isomorphic to
Frac (R[I]/(z)) = R. By the same argument, the residue field of R[x](,241) is iso-

morphic to Frac (R[x]/(xQ + 1)) = Frac(C) = C. As R # C we conclude that R[z],)
and R[x](,2+1) are non-isomorphic.

(3) Let (f4)q be as in the theorem; we will show that (F[x,y],))s are pairwise non-
isomorphic for d € N\ {0,2}. Suppose that there is an isomorphism ¢ : F[z,y]s,) =
Flz,y](s, for some d, d'. Then the residue fields must be isomorphic too. However
recall that in general, given a ring R and a prime ideal p, the maximal ideal of R, is
pR, and the residue field is isomorphic to Frac(R/p).

Using this fact in our case contradicts the choices of f; and fy.

Exercise 4. Let F' be an algebraically closed field.

(1) List the prime ideals of R = F[z, y]/(g;y)
[ Hint: Consider the implications of a containment zy € p, for a prime ideal p. Consider
the projections R — R/(x) and R — R/(y) and use that you know the prime ideals
of Fly] and F[z].]

(2) Show that for all prime ideals p of R, R, falls into three cases up to F-algebra isomor-
phism, one which is a field, one which is a domain but not a field and one which is not
a domain.

Proof. (1) The prime ideals of R = F[z, y]/(xy) corresponds to prime ideals inside F[x, y]
containing xy. If zy € p for p prime, then either (z) € p or (y) S p. Suppose (x) € p,
then the image q of p under the projection F[z,y] —» F[$7y]/(x) = [[y] is prime
(where the last isomorphism is given by setting z to 0). As F is algebraically closed, g
must be either (0), or of the form q = (y—b) for some b € F. As p is the preimage of g,
we obtain that p is either equal to (), or equal to (z,y — b), and it is straightforward
to see that any such ideal is prime. By doing the same argument where the roles of x
and y are swapped, we hence conclude that prime ideals of F[x,y] containing zy are
precisely (z), (y), (x —a,y) for a € F and (x,y —b) for b € F. Hence the prime ideals



of R are precisely (Z), (i), (x —a,y) for a € F and (Z,y — b) for b € F, where we use
o to denote the class of an element.

(2) For this exercise, it is useful to know (and prove) the following lemma.
Lemma 1. Let R be a ring with multiplicative subset T and ideal I. Let S = R/[
and let T be the image of T under R = S. Then there is a natural ring isomorphism

T 'S = T_lR/[ .T'R.

Proof. Consider the composition R — T7'R - T_IR/[ .T7'R. As every element

of I is mapped to 0, this induces a map S — T_IR/] . T~'R which sends r + I to

% +1-T7'R. In particular, let £ € T be arbitrary, and write t = t+ [ forat € T. Then

t is mapped to f +17- T_IR, which has inverse % +1-T 'R. Hence every element of

— —1 -
T is mapped to a unit, and thus we obtain a ringmap 7 S —» 1’ 1R/[ . T 'R, given
by sending = rl - (with t € T) to T + 1 - T7'R.
—1
On the other hand, consider the composition R - S — T S. Then an element ¢ € T'
is mapped to (t+1)/1, which is a unit since t+ 1 € T. Hence we obtain an induced map

_ —1
T7R-T S sending % to % Notice that every element of the form r/1 with r € T
is mapped to 0 by this mapped, and thus the ideal generated by elements of this form,

i.e. I-T7'R, is in the kernel. Hence we obtain a map T_IR/] T 'R - T_lS which

maps - 4+ I-T 'R to T” It is then easy to see that this is inverse to the morphism
constructed in the prev1ous paragraph. 0

Now to the exercise. By the above Lemma, we have

(FLe.91/ (29)) = FLoyd\ @) FLoy1 / () - (Pl ]\ ()7 Pl ] =
= Flz,y] x)/gj Flz,y] )_Frac( [z, ]/(x)) F(y)

where in the second to last 1som0rphlsm we Exercise 6.4 on sheet 11. By swapping the

roles of x and y, one obtains R = F(x).
Now let b € F'\ {0}, then
(FL291/ (2y) sy = FLosvI\ @y =) FLey] [ (@) - (FLasy]\ oy - ) Pl y] =

= F[l‘7y (r,y—b)/;p . F[J},y](%y_b) = F[y](y—b)

where the last isomorphism is induced by sending x to 0 (or identifying F[y] =
F[x,y]/(x) and using the Lemma). Again by swapping the roles of x and y we
obtain (F[fﬂa y]/(xy))(mf) = [[2](4-q) for all a € F'\ {0}. These are all isomorphic
by the proof of point Exerél{se 3.1, and are a domain which isn’t a field.

Finally, (F[z, y]/(xy))(f@ is not a domain, since neither /1 nor /1 are zero, but
their product is 0.

To sum up, up to a linear coordinate change we have R, = F(y) a field, R, = F[y],)

which is a domain but not a field or R, = (F[x,y]/(zy)) @) which is not a domain.
0



Exercise 5. Let R be a ring.

(1) Let T € R a multiplicatively closed subset of R. Let q be a prime ideal of T™'R. Let
q° be the contraction of ¢ under R — T~ 'R. Prove that ht(q) = ht(q°).
(2) Let p be a prime ideal of R. Prove that ht(p) = dim R,.

Proof. The proof consists of the following steps based on the observation that both heights
and dimensions are defined in terms of chains of ideals.

(1) Prime ideals of T™'R are in one-to-one correspondence with prime ideals of R that
do not intersect T'. A strictly increasing chain of prime ideals ending in q induces a
strictly increasing chain of prime ideals ending in q° by contraction. Conversely, if
p € q° is prime, then in particular it must avoid T' (as otherwise q would contain a
unit), and thus in a strictly increasing chain of prime ideals ending in q° induces a
strictly increasing chain of prime ideals ending in p by extension.

(2) Prime ideals of R, are in an inclusion preserving one-to-one correspondence with prime
ideals of R avoiding R\ p, i.e. contained in p.

O

Exercise 6. Let S — R be a morphism of rings. Show that a prime ideal p of S is the
contraction of a prime ideal of R if and only if p™ = p.

[ Hint: For one direction use ideas from the proof of Going-Up Theorem (Proposition 9.4.2
of the lecture notes). ]

Proof. Recall that if p is an ideal of S and q is an ideal of R then there are always con-
tainments q° € q and p° 2 p. If there exists a prime ideal q of R such that p = q°, then
p° =q”“ ¢ q and therefore p° € q° = p. Since the inclusion p € p“ holds always this shows
that p™ = p.

Conversely, denote R, := (¢(S \ p) 'R (this is a common notation so remember it) where
¢ : S = R is the ring morphism from the statement. If p° = p holds, then the ideal p°
doesn’t meet the image of S\p in R. Thus peRp is a proper ideal of R,. Let m be a maximal
ideal of R, that contains p°R,. Let q S R be the contraction of m along R — R,. Then
q is a prime ideal of R that doesn’t intersect the image of S\ p in R, and p° € q. Hence,
p=p“cqiandqSpasqn(S\p)=2. O

Exercise 7. Let R be a ring, let M be an R-module and let~T, S € R be two multiplicatively
closed subsets of R. Define ST := {st | s€ S,t € T} and S := {s/1 | s€ S} € T™'R.

(1) Show that ST and S are multiplicatively closed subsets of R resp. T'R.

(2) Show that there exists a ring morphism S~ (T™'R) — (ST) 'R sending (r/t)/(s/1) €
S™MT'R) to r/(st) € (ST) 'R. Show further that this is an isomorphism.

(3) Show that S~ (77" M) and (ST)™"M are isomorphic as (ST)~" R-modules, where the

(ST)_IR—module structure of g_l(T_lM) is provided via the isomorphism of the pre-
vious point.

(4) Show that if 7' € S then ST = S, and formulate the results of points (2) and (3) in
this case.

Proof. (1) Note that 1 € SN T and thus 1 = 1-1 € ST. Furthermore, if 5,5 € S
and ¢,¢' € T then (st)(s't') = (ss')(tt') € ST as ss € S and tt' € T. Hence ST is
multiplicatively closed. As for S, note that if ¢ : R —» R' is any ring morphism, then



#(S) € R' is multiplicatively closed as ¢(1) = 1 and ¢ preserves multiplication. So as
S is the image of S under the localisation morphism R — T_lR, we conclude that it is
a multiplicatively closed subset of 77" R.

Denote by tp : R » T 'R, 197 : R —» (ST) 'R and 15 : T'R - S (T 'R) the
localization morphisms. As T € ST, the morphism tgp sends every element of T' to
a unit. Hence by the universal property of localization, there exists a ring morphism
LrsT T'R > (ST)™'R such that tysr © by = tgp. This implies that any ¢ €
T™'R is mapped to Z € (ST)'R. Now let s/1 € S be arbitrary. Then trsr sends

s/1 to s/1 € (ST)™'R, which is a unit (with inverse 1/s). Hence by the universal
property of localization, there exists a ring morphism ¢ : S~ (T 'R) - (ST)'R
such that ¢ o 15 = vy gp. This implies that ¢ sends any (r/t)/(s/1) € S™MT'R) to
LSVST(T/t)(LS’ST(S/l))_l = r/(ts) € (ST) 'R, so this is the morphism we sought to
construct.

To prove that ¢ is an isomorphism, we construct an inverse. Note that tg o 1y :
R — S YT 'R) sends any st € ST to (st/1)/(1/1), which has inverse (1/t)/(s/1) €
S™YT™'R). Indeed, we have

()1 E)- )=

Hence by the universal property of localization, there exists a ring morphism v :
(ST)'R - ST (T R) such that 1orgp = t3oup. This implies that any r/(st) € S™'R
is mapped to

Bl = Gs o er) - Gs oo™ = ((1)1(3)) - ((3)1(3)) = () 13)):

(3)

Hence ¢ and ¢ are mutually inverse, and thus isomorphisms.
The structure of S_l(T_lM) as an (ST)™' R-module is given by the formula

()= @ (5) - (G0 (5))

Tensor approach: Note that by Exercise 5 of Sheet 11, we have
(STY "M = (ST) 'R®y M
and
ST M) =5 (T'R) @15 (TT'R®p M).
Note that we have
SMT'R) @1z (TT'R®z M) = (S (TT'R) @15 T 'R) @z M =
= SNTT'R)®z M = (ST) 'R &y M,

at the very least as R-modules. By following the chain of isomorphisms, the above
isomorphism is given on simple tensors by mapping (r/t)/(s/1) ® (r'[t' ® m) to
((rr')/(tt's)) ® m. 1t is then straightforward to check that this map is in fact (ST) ™" R-
linear, and thus an isomorphism of (ST')™" R-modules.
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Pure localization approach: Denote by o @ M — T 'M, 15 : M — (ST)'M
and LJS\:/[ : T'M — S (T™'M) the localization morphisms. Recall that S~ (7 M)
is naturally an R-module, via the localization morphisms (i.e. multiplication by r
is multiplication by (r/1)/(1/1)). Notice that multiplication by any st € ST on
S™HT™'M) is invertible, with inverse being multiplication by (1/¢)/(s/1). Hence
by the universal property of localization of a module (see the solution of Exercise 1
on Sheet 10), S~ (77" M) naturally has the structure of an (ST) ™" R-module via the
formula

= ((%) / (T)) = ((r/1)/(1/1)) - (s /D] f1)) ™ ((%) / (T)) - ((%) / (T))

and there exists an (ST)™'M-module morphism ¢" : (ST)'M - S Y(T7'M) such
that @/)M o Lng = Li\g o L%/I. Notice that the (ST)_IM—module structure on 5_1(T_1M)
is the same as the one defined via the isomorphism of the previous point, and that sz
maps an element m/(st) to (m/t)/(s/1).

Now either one constructs an inverse to wM with a similar procedure, or one proves di-
rectly that ¢" is an isomorphism. We will do the latter for once: if y := (m/t)/(s/1) €
STNT ™' M) is arbitrary, then ¢ maps 2 := m/(ts) to (m/t)/(s/1), so v™ is surjec-
tive. Finally, suppose that ¢ maps some m/(st) € (ST)™'M to 0. Then there exists
s'/1 € S such that (s'/1)(m/t) = 0 inside 7" M. Therefore, there exists t' € T such
that t's'm = 0 inside M. But then as t's' € S, this means m/(st) = 0 inside (ST) " M.
Thus z/JM is also injective, and hence an isomorphism.

(4) As 1 € T we have S € ST. On the other hand, we have ST € SS ¢ S as S is
multiplicatively closed, so ST = S. Hence point (2) gives S~ (T7'R) = S™'R as rings,
and point (3) gives SHT'M) = ST'M as S”' R-modules.

[

Exercise 8. In Exercise 6 of sheet 10, we saw how to construct the tensor product of two
R-algebras. The goal is to show the following result:

Proposition 0.2. Let k be an algebraically closed field, and let R, S two finitely generated
k-algebras which are domains. Then R ®; S is again a domain.

During this exercise, you can freely use the following results (which you will see shortly) :

o Nullstellensatz (Theorem 6.5.4 from the notes)

o For any finitely generated k-algebra T and any maximal ideal m, the composition
k - T — T/m is an isomorphism (see the proof of the weak Nullstelensatz, which is
Theorem 6.2.2 in the notes).

Proceed as follows:
(1) Let T be a finitely generated k-algebra which is a domain, and let aq,...a, € T be
non-zero. Show that there is a maximal ideal m of 7" such that a; ¢ m for all 7.
[ Hint: write T as a quotient of a polynomial ring, and use Nullstellensatz. |
(2) Show that any element in R ®;, S can be written as

Zai®bi

2
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with the b,’s linearly independent over k.

(3) Assume that

1

J

where both families (b;); and (b;) ; are linearly independent. Let m be a maximal ideal
not containing any of the a;, a;.
Show by applying the ring map

R®,S > R/m®,S=S
that one of the factors must be zero, and hence conclude that R ®; S is a domain.

Proof. (1) We give two proofs of this part: one uses the intended way (which is more
“geometric”), while the other one works over arbitrary fields (and is more “algebraic”).
Note that in both cases, we may assume s = 1 (we will write a = a;). Indeed, since

T is a domain, HZ a; # 0, so we reduce to the case s = 1 since maximal ideals are prime.

Intended way: Let us write T = k[xy,...,x,]/I (this is possible by definition of a
finitely generated k-algebra). We need to find a maximal ideal in 7" which does not
contain a. Let b € k[x,...,x,] be a lift of a. By the correspondence theorem, we
need to find a maximal ideal in k[x,...,x,] which contains I but not b.

By Nullstellensatz, this is equivalent to finding some = € k" such that x € V(I) but
x ¢ V(D). Indeed, if we had such an element, the maximal ideal m := I({x}) would do
the job by Nullstellensatz.

If such an x did not exist, then we would have V(I) € V(b). Applying Nullstensatz
would then give

beJ(b) = I(V(b) S I(V(I))=VI =1

where the last equality holds since I is prime (T = k[z1,...,z,]/] is a domain). How-
ever, b € I implies that a = 0 (recall bis a lift of a € k[zy,...,x,]/I) which contradicts
the hypothesis.

More general way: Let us show the following result:

Lemma 0.3. Let k be an arbitrary field, and let f : T — S be a morphism of finitely
generated k-algebras. Then for all maximal ideal m € S, f_l(m) 15 maximal.

Proof. The map f induces an injection
T/f7(m) - S/m
Since S/m is a field, we have
trdeg, (S/m) = dim(S/m) =0

Since T'/f~"(m) € S/m, we also have trdeg, (T'/ /' (m)) = 0, and hence dim(7"/ f " (m)) =
0. This means by definition that any prime ideal of dim(7'/f~'(m)) is maximal. Since
T/ f_l(m) is a domain (the preimage of a prime ideal is always a prime ideall), we
deduce that (0) is maximal, so T/ f~"(m) is a field (i.e. M (m) is maximal). O
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Remark 0.4. This lemma above is completely wrong for non-finitely generated k-
algebras! For example k[x] € k(z) gives a counterexample ((0) is maximal in k(z),
but not in k[x]).

Now, the point is that T, is again a finitely generated k-algebra! (indeed, we have

T, = T[2]/(xa — 1)). Thus, given any maximal ideal m € T}, its preimage m® will be
maximal in T by the lemma above. Since it cannot contain a, we win.

(2) Let ) ,.;r ® s; € R®, S. If the elements s; are linearly independent, we are fine. If

not, we can write s; = ). a;s;, we
ZTZ'®SZ' = Z(T1®S’L)+T] ®Za282 = Z(T1®Sz) +Z(O{1TJ)®SZ = Z(T‘Z+Ozz7“])®sz
i€l i+] 1#] i%] i#] 1#]

Note that in the right-hand side, s; never appears. Since the index set [ is finite, this
process has to finish at some point.
(3) Let us show that R ®, S is a domain. Assume that

(Zai®bi)-(2az®b;) =0

1

J

and assume that both families (b;); and (b; ); are linearly independent (see the previ-
ous point). By contradiction, further assume that both elements above are non-zero.
Therefore, a;,, # 0 and a"h # 0 for some i, j;. By the first point, there exists a maximal
ideal m be a maximal ideal not containing a;, and a;,.

Since k is algebraically closed, R/m = k by the weak Nullstellensatz. Let 6 : R/m —
k denote an isomorphism. Thus there is a ring map R®;.S — S is given by Zl 7, ®s; —
>, 0(77)s;. Applying our ring map above gives the element

(Z e(a_i)bi) : (Z Q(a_;-)bj) =0

Since S is a domain, one of the two terms above is 0 (without loss of generality we may
assume Y . 0(a;)b; = 0).
Since the b;’s are linearly independent, we have 6(a;) = 0 for all i. However, 6 is an
isomorphism, so a; = 0. This is impossible since a;, € m by assumption.
O



