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Rings and modules Exercises

Sheet 11 - Solutions

There was one bonus exercise on this problem sheet. The exercise was denoted by the
symbol ¹ next to the exercise number.

Exercise 1. LetR be a ring and letM,N beR-modules. Prove that Tor
R
0 �M,N� 	MiRN .�Hint: Try to adapt the proof of Proposition 5.3.8 in the printed course notes.�

Proof. Let Pa � M be a projective resolution. Notice that we have a short exact sequence

0 � im�p1� i
� P0

p0
� M � 0. By right exactness of the tensor product, it follows that

im�p1�iRN � P0iRN �M iRN � 0 is exact. To conclude, it su�ces to verify that the

image of iiR idN coincides with the image of p1iR idN . For this, notice that p1 � i`p1¶im�p1�,

where p1¶im�p1� is the corestriction of p1 to im�p1�. Hence
p1 iR idN � �iiR idN� ` �p1¶im�p1�

iR idN�,
but p1¶im�p1� is surjective and thus by right exactness also p1¶im�p1�

iR idN , and thus im�p1iR

idN� � im�iiR idN�. Hence we have
M iR N 	 P0 iR Nªim�iiR idN� � P0 iR Nªim�p1 iR idN� � H0�Pa iR N� � Tor

R
0 �M,N�.

□

Exercise 2. Let R be a ring and N an R-module. We say that N is �at if for every short
exact sequence of R-modules

0�M �M
¬

�M
¬¬

� 0

the sequence
0�M iR N �M

¬

iR N �M
¬¬

iR N � 0

is exact. Prove that the following are equivalent:

(1) N is �at,

(2) Tor
R
i �M,N� � 0 for every R-module M and every i % 0,

(3) Tor
R
1 �M,N� � 0 for every R-module M .

�Hint: For (1)�(2) take a free resolution of M and tensor it with N to compute the
Tor-functors. For (3)�(1) use the long exact sequence for left derived functors.�
Proof. We prove a cycle of implications:

�1�� �2� � Let Pa � M be a projective resolution of some R-module M . As N is �at, the chain
complex �Pa � M� iR N (with the M at position �1) is still exact, and thus its
homology groups vanish. Thus for i % 0 we obtain

Tor
R
i �M,N� � Hi�Pa� � Hi�Pa �M� � 0.

�2�� �3� � Trivial.
�3�� �1� � Let 0�M �M

¬
�M

¬¬
� 0 be an exact sequence of R-modules. From the long exact

sequence for left derived functors, we obtain an exact sequence

�� Tor
R
1 �M ¬

, N�� Tor
R
1 �M ¬¬

, N�ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
�0

�M iR N �M
¬

iR N �M
¬¬

iR N � 0.
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In particular, 0�M iR N �M
¬
iR N �M

¬¬
iR N � 0 is exact, and thus N is �at.

□

Exercise 3. Let R � k�x, y� where k is a �eld. Consider the R-modules M �� �x, y� (i.e.
the ideal generated by x and y) and N �� RªM .

(1) Compute Tor
R
i �M,N� for all integers i ' 0.�Hint: Use the de�nition.�

(2) Is N �at?

(3) Compute Tor
R
i �N,N� for all integers i ' 0.�Hint: Use the long exact sequence.�

Proof. (1) We saw already a couple of times that M admits the free resolution Pa � M
given by

0 // P1 � R // RhR � P0
// M // 0

1 � // �y,�x�
�1, 0� � // x

�0, 1� � // y.

This already shows that Tor
R
i �M,N� � 0 for all i ' 2. Furthermore, we have

Tor
R
1 �M,N� � ker�p1 iR idN�. Notice that p1 iR idN maps a simple tensor r i n

to �ry,�rx�i n, and

�ry,�rx�i n � �ry, 0�i n � �0, rx�i n � �r, 0�i �ynÍÑÏ
�0

� � �0, r�i �xnÍÑÏ
�0

� � 0.

Hence p1 iR idN is equal to 0 on simple tensors, and thus equal to 0. We therefore
obtain Tor

R
1 �M,N� 	 R iR N 	 N . Also, as then im�p1 iR idN� � 0 we have

Tor
R
0 �M,N� 	 �RhR�iR N 	 N hN . In conclusion

Tor
R
i �M,N� 	

~����������

N hN if i � 0,

N if i � 1,

0 otherwise.

(2) We have Tor
R
1 �M,N� � N j 0 and thus N isn't �at by Exercise 2.

(3) Notice that we have a short exact sequence 0 � M � R � N � 0. We would like to
tensor this with N and take the induced long exact sequence. To prepare this, notice
that Tor

R
i �R,N� � 0 for all integers i % 0. Indeed, a projective resolution of R is

provided by � � 0 � R
id
� R � 0. As we have the 0 module on positions with

index i % 0, and this remains the case after tensoring with N , we conclude that indeed
Tor

R
i �R,N� � 0 for all integers i % 0. For i % 1, consider now the following excerpt

from the long exact sequence

�� Tor
R
i �R,N�ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
�0

� Tor
R
i �N,N�� Tor

R
i�1�M,N�� Tor

R
i�1�R,N�ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

�0

��.

Hence we obtain that Tor
R
i �N,N� 	 Tor

R
i�1�M,N� for all integers i % 1, and thus by

point �1� we have TorRi �N,N� � 0 for all integers i % 2 and Tor
R
2 �N,N� 	 N . Now we
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focus on the start of the long exact sequence:

�� Tor
R
1 �R,N�ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
�0

� Tor
R
1 �N,N��M iR N � RiR N � N iR N � 0.(�)

The key observation here is that the map M iRN � RiRN is the zero map. Indeed,
if r i �s �M� "M iR N is a simple tensor then this is mapped to

r i �s �M� � 1i �r�s �M�ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
�0

� � 0

insinde RiRN . So as simple tensors generate the tensor product, we indeed have that
the map M iR N � RiR N is trivial. Plugging this back into (�) we directly obtain

Tor
R
1 �N,N� 	 M iR N 	 N h N , where we used the previous point and Exercise 6.

Finally, as the image of M iR N inside R iR N is 0, we obtain also from (�) that

R iR N � N iR N is an isomorphism. Hence Tor
R
0 �N,N� 	 N iR N 	 N . In

conclusion,

Tor
R
i �N,N� 	

~����������

N if i " r0, 2x,
N hN if i � 1,

0 otherwise.

□

Exercise 4. Let R be a ring.

(1) Prove that free R-modules are �at.
(2) Prove that projective R-modules are �at.�Hint: Use the characterization of projective modules as direct summands of free

modules.�
(3) Assume that R is an integral domain. Determine for which ideals I of R the R-module

RªI is �at.

Remark 0.1. There exists a partial converse of (2): a �at �nitely generated module over a
Noetherian ring is projective.
The �nite generation hypothesis is very important, as the Z-module Q is �at (see exercise

6.3), but not projective. There are also counter-examples in the Non-noetherian case.

Proof. (1) It su�ces to prove that R
hI

is �at, where I is an arbitrary set. Notice that for

an R-module M , we have a natural isomorphism ηM � M iR R
hI
� M

hI
, given on

simple tensors by mi�ri�i ( �rim�i. Indeed, ηM exists as it is the map induced by the

R-bliniear map �m, �ri�i� "M h R
hI
( �rim�i "MhI

. We now construct an inverse:

let θM �M
hI
�M iRR

hI
be the map de�ned by sending �mi�i to <j�mjj0

mji �δij�i.
It is straightforward to verify that this is the inverse of ηM . Lastly, note that ηM is
natural. To see this, let f � M � N is an R-module homomorphism. We must verify
that f

hI
` ηM � ηN ` �f iR idRhI�. It su�ces to verify this on simple tensors: the LHS

maps mi �ri�i via �rim�i to �f�rim��i, and the RHS maps mi �ri�i via f�m�i �ri�i
to �rif�m��i. These two agree as as f is R-linear.

Now to show that R
hI

is �at, it su�ces to show that �iRR
hI

preserves injections (as
we already know that it is right exact by Exercise 5 of sheet 10). So let f �M � N be

injective, then by what we showed above, under the identi�cations M iR R
hI
	 M

hI
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and N iRR
hI
	 N

hI
, the map f iR idRhI is just f

hI
. So as f

hI
is injective, f iR idRhI

is too, and hence R
hI

is �at.
(2) Suppose M is projective and let M

¬
be an R-module such that M h M

¬
	 R

I
. In

a similar way as for the previous point, if A is an R-module, then there is a natural
isomorphism ηA � AiR �M hM

¬�� �AiR M�h �AiR M
¬� which maps ai �m,m¬�

to �a im, a im
¬�. Under this identi�cation, if f � A � B is an R-linear map, then

fiR idMhM ¬ corresponds to �fiR idM�h�fiR idM ¬�; it su�ces to check this on simple
tensors.
Now if f is injective, then by the previous point f iR idMhM ¬ , and thus under the
identi�cations provided by ηa the map �f iR idM� h �f iR idM ¬� is injective. In
particular, fiR idM is injective. Hence �iRM preserves injections, which proves that
M is �at.

(3) If I � 0 then RªI � R is �at. If I � R then RªI � 0 is also �at. We will show that
RªI � 0 is �at only in these two cases. Let I L R be a non-zero proper ideal and let
a " I be non-zero. Since R is a domain the R-module morphismma � R � R de�ned by
ma�r� � ar is injective. However, if we apply �iR

RªI and identify RiR
RªI 	 RªI,

we obtainmaiRidR©I � RªI � RªI which maps r�I to ar�I � 0. ThereforemaiidR©I

is the zero map, which is not injective since I j R, hence RªI is not �at.
□

Exercise 5. Let R be a ring containing a multiplicatively closed subset T , and let M be
an R-module. Show that there is an isomorphism of R-modules

T
�1
M 	 T

�1
RiR M.

Further show that this is an isomorphism of T
�1
R-modules.

�Remark: The right hand side naturally has the structure of a T
�1
R-module by point (1)

of Exercise 6 on Sheet 10.�
Proof. Let ψ � T

�1
R iR M � T

�1
M be de�ned as being induced from the bilinear map

T
�1
R hM � T

�1
M given by � r

t
,m� ( rm

t
; that the latter is well-de�ned and bilinear is

direct. In formulas, ψ is given on simple tensors by r

t
im( rm

t

De�ning an inverse to ψ can be done by hand (by mapping m©t to �1©t�im and showing
that it is well-de�ned and a morphism), and this approach will be given �rst. A more con-

ceptual approach is to prove a universal property for T
�1
M , similar to the one in Theorem

9.2.3 of the notes, that allows to construct a map out of T
�1
M from a map out of M . This

is stated in Remark 9.2.8, and proven below the approach by hand.

First the approach by hand. We show that g � T
�1
M � T

�1
R iR M de�ned by g�m

t
� �

1

t
im for m "M and t " T is well-de�ned and inverse to ψ. Suppose that m1

t1
�

m2

t2
. Then

there is t
¬
" T such that t

¬�t2m1 � t1m2� � 0. Thus 1

t1
im1 �

t
¬
t2

t¬t2t1
im1 �

1

t¬t2t1
i t

¬
t2m1 �

1

t¬t2t1
i t

¬
t1m2, which is equal to 1

t2
i m2 by a symmetrical argument. This shows that g

is well de�ned. To show that it is a T
�1
R-module homomorphism, we must show that

it respects addition and scalar multiplication: for addition, g�m1

t1
�

m2

t2
� � g� t2m1�t1m2

t1t2
� �

1

t1t2
i �t2m1 � t1m2� � 1

t1t2
i t2m1 �

1

t1t2
i t1m2 �

1

t1
im1 �

1

t2
im2 as required. For scalar

multiplication, g� r

s

m

t
� � 1

st
i rm �

r

st
im �

r

s
�1

t
im� � r

s
ϕ�m

t
�. Now it remains to show
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that ψ and g are mutually inverse: we have

ψ�g�m
t
�� � ψ�1

t
im� � m

t

and on simple tensors (it su�ces to check these as they generate the tensor product)

g�ψ�r
t
im�� � g�rm

t
� � 1

t
i rm �

r
t
im.

So g and ψ are isomorphisms, and as g is T
�1
R-linear, ψ is too. As a side note, notice that

it follows from this isomorphism that every element of T
�1
RiRM is expressible as a simple

tensor.

Conceptual approach:

Theorem. Let R be a ring with multiplicatively closed subset T and let M be an R-module.
Let i �M � T

�1
M be the R-module homomorphism de�ned by m( m

1
. Lastly, an R-module

N will be called T -invertible if for every t " T the multiplication map µt � n " N ( tn " N
is an isomorphism.

(1) A T -invertible R-module N admits a natural T
�1
R-module structure, de�ned by r

t
�n ��

µ
�1
t �rn�.

(2) For every R-module homomorphism ϕ �M � N with N being T -invertible, there exists

a unique R-module homomorphism ϕ � T
�1
M � N such that ϕ � ϕ ` i. Furthermore,

ϕ is a T
�1
R-module homomorphism for the T

�1
R-module structure on N from the

previous point.

Proof. (1) TheR-module structure is equivalent to a ring homomorphism λ � R � EndZ�N�,
mapping r to µr. The ring EndZ�N� isn't necessarily commutative, so to get around
this let S N EndZ�N� be the subring generated by λ�R� and rµ�1t ¶ t " Tx. Then it is

straightforward to check that S is commutative, and that the corestriction λ¶S � R � S
maps every element of T to a unit. Hence, by the universal property of T

�1
R, there

exists a map Λ � T
�1
R � S 0 EndZ�N� extending λ¶S. This gives N the structure of

a T
�1
R-module, and it is straightforward to check that r

t
� n �� µ

�1
t �rn�.

(2) We de�ne ϕ � T
�1
M � N by the formula ϕ �m

t
� � 1

t
ϕ�m� (where we make use of the

T
�1
R-module structure onN). We have to check that this is well de�ned: suppose m1

t1
�

m2

t2
, i.e. there is a t

¬
" T such that t

¬�t2m1 � t1m2� � 0. Then by applying ϕ we obtain

t
¬�t2ϕ�m1� � t1ϕ�m2�� � 0 inside N , and as N is T -invertible this implies 1

t1
ϕ�m1� �

1

t2
ϕ�m2�. Hence ϕ is well-de�ned. Note that ϕ � ϕ ` i follows immediately from the

construction. So what is left to check is that ϕ is a T
�1
R-module homomorphism:

(additive): ϕ �m1

t1
�

m2

t2
� � 1

t1t2
ϕ�t2m1 � t1m2� � 1

t1
ϕ�m1�� 1

t2
ϕ�m2� � ϕ �m1

t1
�� ϕ �m2

t2
� for all

t1, t2 " T and m1,m2 "M .

(T
�1
R-linear): ϕ � r

s

m

t
� � 1

st
ϕ�rm� � r

st
ϕ�m� � r

s
ϕ �m

t
� for all r " R, s, t " T and m "M .

Hence ϕ is a T
�1
R-module homomorphism (and in particular an R-module homomor-

phism).
□
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With this at hand, notice that T
�1
R iR M is T -invertible: indeed, by Exercise 6.1 on

Sheet 10, T
�1
R iR M has the structure of a T

�1
R-module (such that multiplication by

r©1 is multiplication by r). In particular, multiplication by t " T is invertible (the inverse

being multiplication by 1

t
). Therefore, by the universal property of T

�1
M , the map ϕ �

M � T
�1
R iR M which sends m ( 1 i m induces ϕ � T

�1
M � T

�1
R iR M de�ned

by m

t
(

1

t
�1 i m� � 1

t
i m. It is then easy to see that ϕ is inverse to ψ, and as ϕ is a

T
�1
R-module homomorphism, ψ is too. □

Exercise 6. Let R be a ring with multiplicative subset T , and suppose that L, M and N
are R-modules.

(1) Show that if there is an R-module homomorphism f �M � N then there is a natural

T
�1
R-module homomorphism fT � T

�1
M � T

�1
N .

(2) Show that there is an isomorphism of T
�1
R-modules T

�1�MhN� 	 �T�1
M�h�T�1

N�.
(3) Suppose there is an exact sequence

0� L�M � N � 0.

Prove that the sequence

0� T
�1
L� T

�1
M � T

�1
N � 0

is also exact. Deduce that if L LM is a subR-module, then T
�1 �MªL� 	 T

�1
M¬T�1

L

and that localization by T is an exact functor of R-modules and that T
�1
R is a �at

R-module.
(4) Let p be a prime ideal of R. Show that there is an isomorphism of rings Frac �Rªp� 	

RpªpRp
.

�Remark: For a local ring A with maximal ideal m we call Aªm the residue �eld of A.�
Proof. There are two possible approaches to the �rst three points: either one uses the
universal property of localisation of a module proven in the conceptual solution to Exercise
5, or one uses the description of localisation of a module by a tensor product provided by
Exercise 5. Both have their advantages and disadvantages, so will discuss both.

(1) Tensor approach: By applying the functor T
�1
R iR � we obtain a map idT�1RiRf �

T
�1
RiR M � T

�1
RiR N which on simple tensors is de�ned by r

t
im( r

t
i f�m�.

Under the identi�cation provided by Exercise 5, this gives a map of R-modules fT �

T
�1
M � T

�1
N de�ned by m

t
(

f�m�

t
. It is then straightforward to check to see that

this is a T
�1
R-module homomorphism.

Pure localisation approach: Denote by iM resp. iN the natural maps iM �M � T
�1
M

and iN � N � T
�1
N . Then as T

�1
N seen as an R-module is T -invertible, the map

iN ` f �M � T
�1
N induces a T

�1
R-module homomorphism fT � T

�1
M � T

�1
N such

that fT ` iM � iN ` f (by the universal property of module localisation proven in the

solution to Exercise 5). It is straightforward to check that fT maps m

t
" T

�1
M to

f�m�

t
" T

�1
N .

(2) Tensor approach: The functor LiR � is additive for any R-module L, meaning more
precisely that the map L iR �M h N� � �L iR M� h �L iR N� sending a simple
tensor l i �m,n� to �l i m, l i n� is a well-de�ned isomorphism of R-modules. By
applying this to L � T

�1
R and using the identi�cation provided by Exercise 5, we
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obtain that the map T
�1�M h N� � �T�1

M� h �T�1
N� de�ned by sending

�m,n�

t
to

�m

t
, n
t
� is an R-module isomorphism. It is then straightforward to check that this is in

fact a T
�1
R-module homomorphism.

Pure localisation approach: Denote by iM , iN resp. iMhN the natural localisation
maps. The map iM h iN �M hN � T

�1
M hT

�1
N goes to a T -invertible module, and

hence by the universal property induces a map of T
�1
R-modules ϕ � T

�1�M h N� �
T
�1
M h T

�1
N such that ϕ ` iMhN � iM h iN (which in particular implies that

�m,n�

t

is mapped to �m

t
, n
t
�). Now either one checks by hand that this is bijective (which is

straightforward), or one constructs an inverse (which is a bit heavy on notation but
a good exercise). We will do the latter. If jM resp. jN are the natural inclusions
jM � M 0 M hN resp. jN � N 0 M hN , then the maps iMhN ` jM and iMhN ` jN
induce T

�1
R-maps ψM � T

�1
M � T

�1�M hN� and ψN � T
�1
N � T

�1�M hN� such
that ψM ` iM � iMhN ` jM and ψN ` iN � iMhN ` jN (which in particular implies that
m

t
is mapped to

�m,0�

t
and n

t
is mapped to

�0,n�

t
). Then ψM and ψN together induce

ψ � T
�1
M h T

�1
N � T

�1�M h N�, given by mapping �m

t
, n
t¬
� to

�m,0�

t
�

�0,n�

t¬
, which

can also be written as
�t
¬
m,tn�

tt¬
. It is then straightforward to check that ϕ and ψ are

mutually inverse.
(3) We �rst prove exactness of the sequence.

Tensor approach: As T
�1
RiR� is right exact by Exercise 5 on sheet 10, we already

have that T
�1
L � T

�1
M � T

�1
N � 0 is exact. Let f be the map f � L � M ; to

conclude, we must show that fT is injective. So suppose that l

t
is mapped to 0 by fT ,

i.e.
f�l�

t
is 0 inside T

�1
M . This means that there is t

¬
" T such that t

¬
f�l� � 0 in M ,

which by injectivity of f means that t
¬
l � 0. But then l

t
� 0 inside T

�1
L, so fT is

injective. Hence 0� T
�1
L� T

�1
M � T

�1
N � 0.

Pure localisation approach: Denote by f � L � M and g � M � N the maps of
the sequence. Just as in the tensor approach, one proves that fT is injective. To show
that gT is surjective, let n

t
" T

�1
N be arbitrary. Then as g is surjective, there is

m " M such that g�m� � n, and thus gT maps m

t
to n

t
, so gT is surjective. So it

remains to show exactness at T
�1
M . As gT ` fT is equal to �g ` f�T which is 0, we

obtain im fT N ker gT . To prove the reverse inclusion, let take m

t
" ker gT . That is,

we have that
g�m�

n
is 0 inside T

�1
N , i.e. there exists t

¬
" T such that t

¬
g�m� � 0. By

exactness of the original sequence, there exists l " L such that f�l� � t
¬
m. Hence

we obtain that fT maps l

tt¬
to m

t
. Thus we proved that also ker gT N im fT , and thus

0� T
�1
L� T

�1
M � T

�1
N � 0 is exact.

Note that for any R-submodule L N M we can set N �� MªL to obtain an exact

sequence 0� L�M � N � 0, and then as 0� T
�1
L� T

�1
M � T

�1
N � 0 is also

exact we obtain

T
�1 �MªL� � T�1

N 	 T
�1
M¬T�1

L.

Note that under this isomorphism, m�L

t
is mapped to m

t
� T

�1
L.

To prove that localisation by T is a (covariant) functor, we must show that �idM�T �
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idT�1M and �g ` f�T � gT ` fT for any R-module homomorphisms f � L � M and
g �M � N , which are both straightforward. The above then implies that localisation
by T is moreover exact.
Finally, the identi�cation provided by Exercise 5 shows that T

�1
R iR � is an exact

functor, which means that T
�1
R is a �at R-module.

(4) We construct mutually inverse morphisms. First, notice that the composition R �
Rp �

RpªpRp
has kernel equal to p. Indeed, every element of p is mapped to 0, and

if r " R is mapped to 0 then r

1
is inside pRp, which means that there exists r

¬
" p

and t " R ¯ p such that r

1
�

r
¬

t
. This in turn means that there is t

¬
" R ¯ p such that

t
¬�rt � r

¬� � 0. In particular, rtt
¬
" p, and as tt

¬
� p we obtain r " p. Therefore, we

obtain an injective ring morphism Rªp� RpªpRp
. Notice that if t�p j 0, then this is

mapped to t

1
� pRp. This has inverse

1

t
� pRp, so every non-zero element is mapped to

an invertible element in RpªpRp
. Thus the universal property of localisation induces

a ring morphism Frac �Rªp�� RpªpRp
, mapping r�p

t�p
to r

t
� pRp.

On the other hand, the composition R � Rªp � Frac �Rªp� maps every element of

R¯p to an invertible element, and hence induces a ring map Rp � Frac �Rªp� given by

sending r

t
to r�p

t�p
. Then, if r " p, then r

1
is mapped to 0, and thus the ideal generated by

elements of this form, i.e. pRp, is in the kernel. Hence we obtain RpªpRp
� Frac �Rªp�

given by sending r©t� pRp to
r�p

t�p
. This is clearly inverse to the morphism constructed

in the previous paragraph, so it is an isomorphism of rings.

□

Exercise 7. Let R be a ring, let S be a multiplicatively closed subset, and let M and N
be R-modules. Show that for all i ' 0,

S
�1

Tor
R
i �M,N� 	 Tor

S
�1

R
i �S�1

M,S
�1
N�.

If furthermore R is Noetherian and M is �nitely generated, then also

S
�1

Ext
i
R�M,N� 	 Ext

i
S�1R�S�1

M,S
�1
N�.

Proof. Let us �rst show the statement about Tor's. Let Pa �M be a projective resolution.
Note that each S

�1
Pi is also projective about S

�1
R (for example use Exercise 5, and the

analogous fact for tensor products). Furthermore, by exactness of the functor S
�1

(see

Exercise 6), we deduce that S
�1
Pa is a projective resolution (over S

�1
R) of S

�1
M .

Before, concluding, let us show that for any R-modules A,B, we have S
�1
AiS�1RS

�1
B 	

S
�1�AiR B�.
This follows from the computation

S
�1
AiS�1RS

�1
B 	 AiRS

�1
RiS�1RS

�1
B 	 AiRS

�1
B 	 AiRBiRS

�1
R 	 S

�1�AiRB�.
Combining all this, we deduce that S

�1
Pa iS�1R S

�1
N 	 S

�1�Pa iR N�. Taking i'th
homology (and again using exactness of S

�1
) shows the statement.

Now, let us show the statement about Ext-functors. The exact same argument will work,
once we know that S

�1
HomR�M,N� 	 HomS�1R�S�1

M,S
�1
N�. First of all, there is always
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a natural map

θM,N �S
�1

HomR�M,N�� HomS�1R�S�1
M,S

�1
N�

given by sending an element f

s
(with f �M � N and s " S) to the map

m

s¬
À

f�m�
ss¬

.

If M 	 R
hm

(let e1, . . . , em denote a basis of M), then this map is an isomorphism.
Indeed, we have

S
�1

HomR�M,N� 	 S�1
HomR�Rhm

, N� 	 S�1�Nhm� 	 �S�1
N�hm

,

where the isomorphism sends

f
s À �f�e1�s , . . . ,

f�em�
s 
 .

On the other hand, we also have an isomorphism

HomS�1R�S�1
M,S

�1
N� 	 HomS�1R��S�1

R�hm
, S

�1
N� 	 �S�1

N�hm

sending

gÀ �g �e1
1
	 , . . . , g �em

1
		 .

We then immediately see that the triangle

S
�1

HomR�M,N� HomS�1R�S�1
M,S

�1
N�

�S�1
N�hm

	

θM,N

	

commutes, so θM,N is an isomorphism in this case.
For the general case, consider an exact sequence

R
hm2
� R

hm1
�M � 0

(recall that M is �nitely generated and R is Noetherian). We can then apply HomR��, N�
and then S

�1
to obtain an exact sequence

0 S
�1

HomR�M,N� S
�1

HomR�Rhm1 , N� S
�1

HomR�Rhm2 , N�.
We could also have applied �rst S

�1
and then HomS�1R��, S�1

N� to obtain

0 HomS�1R�S�1
M,S

�1
N� HomS�1R�S�1

R
hm1 , S

�1
N� HomS�1R�S�1

R
hm2 , S

�1
N�.

Our natural maps θ give the following commutative diagram with exact rows:

0 S
�1

HomR�M,N� S
�1

HomR�Rhm1 , N� S
�1

HomR�Rhm2 , N�

0 HomS�1R�S�1
M,S

�1
N� HomS�1R�S�1

R
hm1 , S

�1
N� HomS�1R�S�1

R
hm2 , S

�1
N�

θM,N θRhm1 ,N θRhm2 ,N

Since both θRhm1 ,N and θRhm2 ,N are isomorphisms, we deduce by the 5-lemma (Lemma 5.6.2
in the notes) that θM,N is an isomorphism. □
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Given a commutative ring R, a prime ideal p of R is said to be minimal it if contains
no strict prime ideal. For example, if R is a domain, then �0� is the only minimal prime.
For the following exercise, you may use without proof the following result, which we will

see later (although its proof does not require any sophisticated tool):

Proposition 0.2. Let R be a Noetherian ring. Then R contains at most �nitely many
minimal prime ideals.

Exercise 8. ¹ As we have seen in Exercise 3.2 of sheet 1, an Artinian ring has dimension
zero. The goal of this exercise is to show the converse. Let R be a zero-dimensional
Noetherian ring. Proceed as follows:

(1) Assume that R is local with maximal ideal m. Show that m
n
� 0 for some n ' 1.

(2) With the same assumptions, conclude that R is Artinian.
(3) Use the local case to show that R is Artinian in general. Hint: Use the proposition

above
(4) Find an example of a zero-dimension ring which is not Artinian.

Proof. (1) You have seen in "Anneaux et Corps" that nil�R� is the intersection of all prime
ideals of R. Since R has dimension zero and is local, there is a unique prime ideal,
namely m. Hence, all elements of m are nilpotent. Since m is �nitely generated (this
is important!), then for some n9 0, m

n
� 0.

(2) Notice that for all j % 0, m
j
is �nitely generated, so m

j©mj�1
is a �nite-dimensional

R©m-vector space. In particular, it is of �nite length. Hence, we have a chain of
inclusions

0 � m
n
N m

n�1
N � � � N m N R,

where all successive quotients have �nite length. Since having �nite length is stable
under extensions, we deduce that also R has �nite length, and hence R is Artinian (see
Exercise 1 of sheet 2).

(3) Note that for any ideal I and prime ideal p N R, the inclusion I N R gives an inclusion
of localizations Ip N Rp, and it is clear from the de�nition that Ip � I

e
. Furthermore,

note that R has �nitely many prime ideals. Indeed, it has �nitely many minimal ones
by Noetherianity, but since R has dimension zero, being a minimal prime and being a
prime is the same.
Now, to the exercise. Let

� � � N Ij�1 N Ij N � � � N I0

be a descending chain of ideals of R.
Since all localizations at primes Rp are Artinian by the local case and there are only

�nitely many prime ideals in R, we deduce that for j 9 0, �Ij�1�p � �Ij�p for all primes
ideals p N R. By exactness of localizations, this is the same as saying for �Ij©Ij�1�p � 0
for all p and j 9 0. We then conclude by Exercise 2 of sheet 12 that Ij©Ij�1 � 0 for
j 9 0, so in other words this descending chain of ideals stabilizes.

(4) Let k be a �eld, and set

R � k�x1, x2, . . . �©�x21, x22, . . . �.
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Since R©Ó0 	 k, we obtain that R has a unique prime ideal (i.e. �x1, x2, . . . �), so
surely R has dimension zero.
However, set Ij � �x21, . . . , x2j�1, xj, xj�1, . . . � N R. Then these ideals form an in�nite

strictly descending sequence of ideals, so R is not Artinian.
□


