EPFL - Fall 2024 Domenico Valloni
Rings and modules Exercises
Sheet 11 - Solutions

There was one bonus exercise on this problem sheet. The exercise was denoted by the
symbol # next to the exercise number.

Exercise 1. Let R be aring and let M, N be R-modules. Prove that TorOR(M, N)= M®pN.
[ Hint: Try to adapt the proof of Proposition 5.3.8 in the printed course notes. ]

Proof. Let P, = M be a projective resolution. Notice that we have a short exact sequence

0 — im(p;) - P, B Mo By right exactness of the tensor product, it follows that
im(p;)®z N - Py®z N - M ® N — 0 is exact. To conclude, it suffices to verify that the
image of i ® zidy coincides with the image of p, ® pidy. For this, notice that p, = iop, |™®),

m(

where p, |i 1) is the corestriction of p; to im(p;). Hence

p1®ridy = (i ®gidy) 0 (p1|lm(m) ®ridy),
but p, | is surjective and thus by right exactness also p, | ® pidy, and thus im(p; ® »
idy) = im(i ®p idy ). Hence we have
R
M ®R N = PO ®R N/lm(Z ®R ldN) = PO ®R N/lm(p1 ®R ldN) = Ho(P. ®R N) = TOI'O (MuN)
O
Exercise 2. Let R be a ring and N an R-module. We say that N is flat if for every short
exact sequence of R-modules
0> M- M - M -0
the sequence
0->M®rN—>M®&yN—->M &N -0
is exact. Prove that the following are equivalent:
(1) N is flat,
(2) Tor?(]\/[, N) =0 for every R-module M and every i > 0,
(3) Tor;(M,N) = 0 for every R-module M.
[Hint: For (1)=(2) take a free resolution of M and tensor it with N to compute the
Tor-functors. For (3)=>(1) use the long exact sequence for left derived functors.]
Proof. We prove a cycle of implications:

(1) = (2) : Let P, > M be a projective resolution of some R-module M. As N is flat, the chain
complex (P, - M) ®g N (with the M at position —1) is still exact, and thus its
homology groups vanish. Thus for ¢ > 0 we obtain

Tor; (M, N) = Hy(P,) = Hy(P, = M) = 0.

(2) = (3) : Trivial.
= (1): Let0 > M - M' - M" - 0 be an exact sequence of R-modules. From the long exact
sequence for left derived functors, we obtain an exact sequence

oo o Tort (M',N) = Tori (M" N) > M ®z N > M @, N > M"®r N - 0.
%—I

=0



In particular, 0 > M @z N » M' @ s N » M" ® N — 0 is exact, and thus N is flat.
O

Exercise 3. Let R = k[x,y] where k is a field. Consider the R-modules M := (x,y) (i.e.
the ideal generated by x and y) and N := R/ 7.
(1) Compute Tor (M, N) for all integers i = 0.
[ Hint: Use the definition. ]
(2) Is N flat?
(3) Compute Tor (N, N) for all integers i = 0.
[ Hint: Use the long exact sequence. |

Proof. (1) We saw already a couple of times that M admits the free resolution P, — M
given by
0)— =P =R——>R®R=Py—> M —>0

l— (y, —x)
(1,0) ———=x
(0,1) ———u.

This already shows that Tor, (M,N) = 0 for all i > 2. Furthermore, we have
Toer(M7 N) = ker(p; ®p idy). Notice that p; ® p idy maps a simple tensor r ® n
to (ry,—rz) ® n, and
(ry,—rz) ®@n = (ry,0)®@n—(0,rz) ® n=(r,0) ® (yn) — (0,7) ® (fo_l,) = 0.
“
=0 =0
Hence p; ®p idy is equal to 0 on simple tensors, and thus equal to 0. We therefore
obtain Torf”(M,N) = R®z N = N. Also, as then im(p; ® idy) = 0 we have
Torg (M,N) = (R® R)®r N = N @ N. In conclusion
NeN ifi=0
Tor (M, N) = {N ifi=1,
0 otherwise.

(2) We have Torf(M,N) = N # 0 and thus N isn’t flat by Exercise 2.

(3) Notice that we have a short exact sequence 0 - M —» R - N — 0. We would like to
tensor this with N and take the induced long exact sequence. To prepare this, notice
that Torf(R,N) = 0 for all integers ¢+ > 0. Indeed, a projective resolution of R is
provided by -+ = 0 —» R % R - 0. As we have the 0 module on positions with
index ¢+ > 0, and this remains the case after tensoring with N, we conclude that indeed
Tor®(R,N) = 0 for all integers i > 0. For i > 1, consider now the following excerpt
from the long exact sequence

v Torf’(R,N) - Torf(N,N) - Toril(M,N) - Torf_l(R,N) — e,
%—J %—J
=0 =0

Hence we obtain that Tor. (N, N) = Torl, (M, N) for all integers i > 1, and thus by
point (1) we have Tor, (N, N) = 0 for all integers i > 2 and Tory (N, N) = N. Now we



focus on the start of the long exact sequence:

(%) cee o Tori (R, N) = Tori(N,N) > M®z N » R®z N » N®z N — 0.
%—I
=0
The key observation here is that the map M ® , N - R®p N is the zero map. Indeed,
ifr®(s+M)€eM®pN is a simple tensor then this is mapped to

r®(s+M)=1® (r(s+M)) =0
%_J
=0
insinde R®r N. So as simple tensors generate the tensor product, we indeed have that
the map M ® g N - R®p N is trivial. Plugging this back into (%) we directly obtain

Tor?(N, N)=M®&zN =N & N, where we used the previous point and Exercise 6.
Finally, as the image of M ®x N inside R ® g N is 0, we obtain also from (%) that

R®pr N - N ®x N is an isomorphism. Hence TorOR(N,N) =Nz N = N. In

conclusion,
N if 1 € {0,2},
Torl(N,N)={Ne N ifi=1,
0 otherwise.

Exercise 4. Let R be a ring.

(1) Prove that free R-modules are flat.

(2) Prove that projective R-modules are flat.
[Hint: Use the characterization of projective modules as direct summands of free
modules. |

(3) Assume that R is an integral domain. Determine for which ideals I of R the R-module
R / J is flat.

Remark 0.1. There exists a partial converse of (2): a flat finitely generated module over a
Noetherian ring is projective.

The finite generation hypothesis is very important, as the Z-module Q is flat (see exercise
6.3), but not projective. There are also counter-examples in the Non-noetherian case.

Proof. (1) It suffices to prove that R®' is flat, where I is an arbitrary set. Notice that for
an R-module M, we have a natural isomorphism 7, : M ®p R® > MM, given on
simple tensors by m® (r;); = (r;m);. Indeed, n;,; exists as it is the map induced by the
R-bliniear map (m, (r;);) € M & R®" v (r;m); € M®'. We now construct an inverse:
let 6, : M®" = M ®p R®" be the map defined by sending (m;); to ¥ om0 15 @ (853)i:
It is straightforward to verify that this is the inverse of 7,,. Lastly, note that n,, is
natural. To see this, let f : M — N is an R-module homomorphism. We must verify
that f® omy = ny o (f ®pidger). It suffices to verify this on simple tensors: the LHS
maps m ® (r;); via (r;m); to (f(r;m)),, and the RHS maps m & (r;); via f(m) ® (r;);
to (r;f(m));. These two agree as as f is R-linear.

Now to show that R®' is flat, it suffices to show that — ®p R® preserves injections (as
we already know that it is right exact by Exercise 5 of sheet 10). So let f : M — N be
injective, then by what we showed above, under the identifications M ®p R® = pm®!



and N ®p R® = NM, the map f ®pidger is just fe[. So as fel is injective, f ® pidper
is too, and hence R®" is flat.

(2) Suppose M is projective and let M' be an R-module such that M & M' = R". In

a similar way as for the previous point, if A is an R-module, then there is a natural
isomorphism 7, : A®z (M @& M') - (A®z M) ® (A®z M') which maps a ® (m,m')
to (a ® m,a ® m'). Under this identification, if f : A — B is an R-linear map, then
f ®rid e corresponds to (f ®pidy,) ® (f ® pidy); it suffices to check this on simple
tensors.
Now if f is injective, then by the previous point f ®p idy;er, and thus under the
identifications provided by 7, the map (f ®p idy) @ (f ®p idys) is injective. In
particular, f ® pid,, is injective. Hence — ® p M preserves injections, which proves that
M is flat.

(3) If I = 0 then /1 = Ris flat. If I = R then £2/] = 0 is also flat. We will show that
R/] = ( is flat only in these two cases. Let I C R be a non-zero proper ideal and let
a € I be non-zero. Since R is a domain the R-module morphism m, : R — R defined by
me(r) = ar is injective. However, if we apply — ®p R/] and identify R®p R/_] = R/L
we obtain m,®gidg;; * R/] - R/] which maps r+1 to ar+1 = 0. Therefore m,®idg,;
is the zero map, which is not injective since I # R, hence R/[ is not flat.

O

Exercise 5. Let R be a ring containing a multiplicatively closed subset 7', and let M be
an R-module. Show that there is an isomorphism of R-modules

T'M=T"Rey M.

Further show that this is an isomorphism of T~' R-modules.
[ Remark: The right hand side naturally has the structure of a 7~ R-module by point (1)
of Exercise 6 on Sheet 10.]

Proof. Let b : T""R®p M — T~ "M be defined as being induced from the bilinear map
T'Re M — T™'M given by (7,m) = ZF; that the latter is well-defined and bilinear is
direct. In formulas, ¢ is given on simple tensors by = c®m - %

Defining an inverse to ¢ can be done by hand (by mapping m/t to (1/t) ® m and showing
that it is well-defined and a morphism), and this approach will be given first. A more con-
ceptual approach is to prove a universal property for T—'M , similar to the one in Theorem
9.2.3 of the notes, that allows to construct a map out of T~'M from a map out of M. This
is stated in Remark 9.2.8, and proven below the approach by hand.

First the approach by hand. We show that g : T-'M — T 'R ® M defined by g($) =

% ® m for m € M and t € T is well-defined and inverse to 1. Suppose that ﬂ = T—; Then

'ty
oty ®my = oty
® ttlmg, which is equal to t— ® my by a symmetrical argument. This shows that g

there is ¢ € T such that t'(tym, — t1m2) = (. Thus ti ®m, = ® t'tym, =

tt t1
is well defined. To show that it is a T~ R-module homomorphism, we must show that

it respects addition and scalar multiplication' for addition, g(++32) = g(%) =
1 2 12
—— @ (tymy +tymy) = ® tomy + — ® time = - @ my + ti ® my as required. For scalar
2

multlphcatlon g(t3) = —t ® rm = E ® m = 8(1 ® m) = ~¢(}). Now it remains to show



that ¢ and ¢ are mutually inverse: we have

o)) = v @ m) =

and on simple tensors (it suffices to check these as they generate the tensor product)

oG @m) =g((F) = @rm=1om

So g and v are isomorphisms, and as ¢ is T R-linear, v is too. As a side note, notice that
it follows from this isomorphism that every element of T’ 'R® r M is expressible as a simple
tensor.

Conceptual approach:

Theorem. Let R be a ring with multiplicatively closed subset T' and let M be an R-module.
Leti: M — T~ 'M be the R-module homomorphism defined by m % Lastly, an R-module
N will be called T-invertible if for every t € T the multiplication map i, :m € N = tn € N
15 an somorphism.

(1) A T-invertible R-module N admits a natural T~ R-module structure, defined by Ten =
pe (rn).

(2) For every R-module homomorphism <b M — N with N being T'- invem‘ible, there exists
a unique R module homomorphism ¢ : T~ 'M - N such that ¢ = ¢ o i. Furthermore,

¢ is a T™ 'R-module homomorphism for the T 'R-module structure on N from the
Previous point.

Proof. (1) The R-module structure is equivalent to a ring homomorphism A : R — Endy(N),
mapping r to u,. The ring End; (V) isn’t necessarily commutative, so to get around
this let S € Endz(N) be the subring generated by A(R) and {u;" | ¢ € T'}. Then it is
straightforward to check that S is commutative, and that the corestriction )\|S )
maps every element of T to a unit. Hence, by the universal property of T_lR, there
exists amap A : T7'R » S o Endy(N) extending A|°. This gives N the structure of
a T~'R-module, and it is straightforward to check that Zen = w;(rn).

(2) We define ¢ : T-'M = N by the formula 5(?) = %o(m) (where we make use of the
T~' R-module structure on N). We have to check that this is well defined: suppose T—ll =
T—;, i.e. there is a t' € T such that ¢ (tym; — t;my) = 0. Then by applying ¢ we obtain
t'(ta(my) — t16(my)) = 0 inside N, and as N is T-invertible this implies i¢(m1) =
igb(mQ). Hence ¢ is well-defined. Note that ¢ = ¢ o i follows immediately from the

construction. So what is left to check is that ¢ is a T _1R—module homomorphism
(additive): & (ZL + ’j—) = -o(tomy + timy) = Lo(my) + Lo(my) = (7”) + (M) for all
l,t € T and my,my € M.
(T_IR—linear) @ (;m) ;qS(rm) = ~p(m) = —¢( ) forallr € R, s,t € T and m € M.
Hence ¢ is a T~ ' R-module homomorphism (and in particular an R-module homomor-
phism).
O



With this at hand, notice that T'R ®r M is T-invertible: indeed, by Exercise 6.1 on
Sheet 10, T7'R ®pr M has the structure of a T~' R-module (such that multiplication by
r/1 is multiplication by r). In particular, multiplication by ¢ € T is invertible (the inverse
being multiplication by %) Therefore, by the universal property of 77 M, the map ¢ :
M — T7'R ®p M which sends m +— 1 ® m induces ¢ : 7'M — T 'R ®p M defined
by % - %(1 ® m) = % ® m. It is then easy to see that ¢ is inverse to v, and as ¢ is a

T~' R-module homomorphism, 1 is too. O

Exercise 6. Let R be a ring with multiplicative subset T, and suppose that L, M and N
are R-modules.
(1) Show that if there is an R-module homomorphism f : M — N then there is a natural
T~' R-module homomorphism fr: 7T 'M —» T 'N.
(2) Show that there is an isomorphism of T~' R-modules T~ (M &N) = (T™'M)&(T"'N).
(3) Suppose there is an exact sequence
0-L->M—->N-=0.
Prove that the sequence
0T 'L>T " 'M—-T"'N-0
is also exact. Deduce that if L ¢ M is a sub R-module, then 7" (M]p)= T_lM/T‘lL

and that localization by T is an exact functor of R-modules and that T'R is a flat
R-module.

(4) Let p be a prime ideal of R. Show that there is an isomorphism of rings Frac ( R/p) =
[ Remark: For a local ring A with maximal ideal m we call A/m the residue field of A.]

Proof. There are two possible approaches to the first three points: either one uses the
universal property of localisation of a module proven in the conceptual solution to Exercise
5, or one uses the description of localisation of a module by a tensor product provided by
Exercise 5. Both have their advantages and disadvantages, so will discuss both.

(1) Tensor approach: By applying the functor T'R ®pr — we obtain a map idp-1p ®pf :
T'R®z M —» T'R®p N which on simple tensors is defined by L@m 7 ® f(m).
Under the identification provided by Exercise 5, this gives a map of R-modules fr :
T™'M - T7'N defined by i @ It is then straightforward to check to see that

this is a 7' R-module homomorphism.

Pure localisation approach: Denote by i, resp. iy the natural maps ¢y, : M — T'M
and iy : N » T7'N. Then as TN seen as an R-module is T-invertible, the map
iyof: M —> T~'N induces a ™' R-module homomorphism fr: T'M - T~'N such
that fr oiy =iy o f (by the universal property of module localisation proven in the
solution to Exercise 5). It is straightforward to check that fr maps =€ T™'M to
L) e 77N,

(2) Tensor approach: The functor L @z — is additive for any R-module L, meaning more
precisely that the map L @ (M & N) —» (L ®p M) & (L ®r N) sending a simple
tensor [ ® (m,n) to (I ® m,l ® n) is a well-defined isomorphism of R-modules. By
applying this to L = T 'R and using the identification provided by Exercise 5, we
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obtain that the map 77 (M & N) » (T"'M) & (T"'N) defined by sending (mt’") to
(%, %) is an R-module isomorphism. It is then straightforward to check that this is in
fact a T~ ' R-module homomorphism.

Pure localisation approach: Denote by i, ix resp. iyen the natural localisation
maps. The map iy @iy : MO®N > T ' M&T 'N goes to a T-invertible module, and
hence by the universal property induces a map of 77" R-modules ¢ : T~ (M & N) —

T'M ® T"'N such that ¢ oiyen = iy ® ix (which in particular implies that @
is mapped to (%, %)) Now either one checks by hand that this is bijective (which is
straightforward), or one constructs an inverse (which is a bit heavy on notation but
a good exercise). We will do the latter. If jy; resp. jy are the natural inclusions
Jm s M = M & N resp. jy : N = M @& N, then the maps iy;en © Jir and ipen © JN
induce ™' R-maps ¢y : T-'M » T- (M @& N) and oy : T'N —» T~ (M & N) such

that wM o ’LM = Z.MGBN o .]M and 1/1]\7 o ’LN = iMeN (o] .]N (Wthh n particular 1mplles that

(m,0) M)

% is mapped to —). Then 1, and ¢y together induce
Vv:T'MeT 'N - T '(MeN), given by mapping (m ") to {9 4 01 which

PR t P

and % is mapped to

can also be written as (“?—t,m) It is then straightforward to check that ¢ and v are

mutually inverse.
We first prove exactness of the sequence.

Tensor approach: As T'R ®r — is right exact by Exercise 5 on sheet 10, we already
have that T'L — T 'M — T™'N - 0 is exact. Let f be the map f : L - M; to
conclude, we must show that fr is injective. So suppose that % is mapped to 0 by fr,
ie. @ is 0 inside 77'M. This means that there is t' € 7" such that ¢ f(I) = 0 in M,
which by injectivity of f means that ¢1 = 0. But then % = 0 inside T_lL, so fr is
injective. Hence 0 » T7'L » T7'M - T™'N — 0.

Pure localisation approach: Denote by f : L — M and g : M — N the maps of
the sequence. Just as in the tensor approach, one proves that fr is injective. To show
that gp is surjective, let = € T 'N be arbitrary. Then as ¢ is surjective, there is

m € M such that g(m) = n, and thus gr maps % to %, SO gr is surjective. So it

remains to show exactness at T~ M. As gr © fr is equal to (g o f)r which is 0, we
obtain im f7 € ker gr. To prove the reverse inclusion, let take % € ker gr. That is,

we have that @ is 0 inside 77N, i.e. there exists ¢ € T such that t'g(m) = 0. By

exactness of the original sequence, there exists { € L such that f(I) = tm. Hence
m

we obtain that fr maps # to =. Thus we proved that also ker g € im f7, and thus
0T 'L >T"'M—>T'N > 0is exact.

Note that for any R-submodule L € M we can set N := M/L to obtain an exact
sequence 0 » L - M — N — 0, and then as 0 — T'L>T"'M->T'N > 0is also

exact we obtain

-3

T (ML) =T N=T M [,

Note that under this isomorphism, mTJ’L is mapped to % +T'L.
To prove that localisation by T is a (covariant) functor, we must show that (idy;)r =



idp-1p, and (g o f)r = gr o fr for any R-module homomorphisms f : L - M and
g : M — N, which are both straightforward. The above then implies that localisation
by T' is moreover exact.
Finally, the identification provided by Exercise 5 shows that T’ "R® r — 1s an exact
functor, which means that T7'Ris a flat R-module.

(4) We construct mutually inverse morphisms. First, notice that the composition R —
R, - Rp/pRp has kernel equal to p. Indeed, every element of p is mapped to 0, and

T

if r € R is mapped to 0 then I is inside pR,, which means that there exists r e P

and t € R\ p such that 7 = —. This in turn means that there is t' € R\ p such that

t'(rt =) = 0. In partlcular rtt € p, and as tt' & p we obtain r € p. Therefore, we
obtain an injective ring morphism R/p - R /pRp. Notice that if t+p # 0, then thls is

mapped to % + pR,. This has inverse % + pR,, so every non-zero element is mapped to
an invertible element in / PR, Thus the universal property of localisation induces
a ring morphism Frac (R/p) - Rp/pRp7 mapping % to % + pR,.
On the other hand, the composition R — R/p - Frac(R/p) maps every element of
R\ p to an invertible element, and hence induces a ring map R, — Frac ( R / p) given by
sendmg = to T+p . Then, if r € p, then = T is mapped to 0, and thus the ideal generated by
elements of thls form, ie. pR,,isin the kernel. Hence we obtain R /pR — Frac ( R/p)
given by sending 7 /¢ + pR, to T+p . This is clearly inverse to the morphism constructed
in the previous paragraph, so 1t 1s an isomorphism of rings.

OJ

Exercise 7. Let R be a ring, let S be a multiplicatively closed subset, and let M and N
be R-modules. Show that for all ¢ > 0,

-1
ST Tor® (M, N) = Tor? "(S™'M,S™'N).

If furthermore R is Noetherian and M is finitely generated, then also
S™'Extr(M, N) = Exty1 o(S™ M, S7'N).

Proof. Let us first show the statement about Tor’s. Let P, = M be a projective resolution.
Note that each S_lPl- is also projective about ST'R (for example use Exercise 5, and the
analogous fact for tensor products). Furthermore, by exactness of the functor st (see
Exercise 6), we deduce that S7'P, is a projective resolution (over S_lR) of ST'M.

Before, concluding, let us show that for any R-modules A, B, we have S'A ®g-1p S7'B =
ST (A®gB).

This follows from the computation

ST'A®s1pS ' B=A®rS R®¢1pS 'B=A®pS 'B= A®pB®rS 'R=S ' (A®xDB).
Combining all this, we deduce that S™'P, ®¢-15 5™ N = S~ (P, ®z N). Taking i’th

homology (and again using exactness of S™') shows the statement.

Now, let us show the statement about Ext-functors. The exact same argument will work,
once we know that S~ Homp(M, N) = Homg-1z(S™ M, S”"N). First of all, there is always



a natural map
Oyrn: S~ Homp(M, N) = Homg-15(S M, S™'N)

given by sending an element f (with f: M — N and s € S) to the map
m_ f(m)

s' ss'

If M = R®™ (let eq,...,e,, denote a basis of M), then this map is an isomorphism.
Indeed, we have

ST Homp(M, N) = S~ Homg(R®™,N) = STH(N®™) = (' N)°®",
where the isomorphism sends

Lo (o), | feal)

S S

On the other hand, we also have an isomorphism

Homg-12(S™' M, S™'N) = Homg-15((S™'R)®", S7'N) = (S~'N)®"

7= (o(5)0(F)).

We then immediately see that the triangle

sending

O, N

S~ Hompg(M, N) > Homg-15(S™ M, S™'N)

(S7'N)e" _

commutes, so 0, x is an isomorphism in this case.
For the general case, consider an exact sequence

R®™ S5 R®™ 5 M -0

(recall that M is finitely generated and R is Noetherian). We can then apply Homg(—, V)
and then S~ to obtain an exact sequence

0 — S 'Homp(M,N) — S "Homg(R®™,N) — S™'Homp(R®™, N).
We could also have applied first S~ and then Homg-15(—, S_lN) to obtain
0 —— Homg-17(S™'M,S™'N) — Homg-1z(S" ' R®™, S™'N) —— Homg15(S™ ' R®™ S™'N).
Our natural maps 6 give the following commutative diagram with exact rows:

0 — S™'Homp(M,N) ——— S 'Homp(R®™",N) —— S 'Homp(R®™, N)

\LQJ\/I,N \LQR‘WH N \LGRWW N

0 —— Homg-17(S™'M,S™'N) — Homg-15z(S™ ' R®™,S™'N) — Homg15(S™ ' R®™, S7'N)

Since both Opem: y and frems y are isomorphisms, we deduce by the 5-lemma (Lemma 5.6.2
in the notes) that ), y is an isomorphism. O
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Given a commutative ring R, a prime ideal p of R is said to be minimal it if contains
no strict prime ideal. For example, if R is a domain, then (0) is the only minimal prime.

For the following exercise, you may use without proof the following result, which we will
see later (although its proof does not require any sophisticated tool):

Proposition 0.2. Let R be a Noetherian ring. Then R contains at most finitely many
minimal prime ideals.

Exercise 8. # As we have seen in Exercise 3.2 of sheet 1, an Artinian ring has dimension
zero. The goal of this exercise is to show the converse. ILet R be a zero-dimensional
Noetherian ring. Proceed as follows:

(1) Assume that R is local with maximal ideal m. Show that m" = 0 for some n > 1.

(2) With the same assumptions, conclude that R is Artinian.

(3) Use the local case to show that R is Artinian in general. Hint: Use the proposition
above

(4) Find an example of a zero-dimension ring which is not Artinian.

Proof. (1) You have seen in "Anneaux et Corps" that nil( R) is the intersection of all prime
ideals of R. Since R has dimension zero and is local, there is a unique prime ideal,
namely m. Hence, all elements of m are nilpotent. Since m is finitely generated (this
is important!), then for some n > 0, m" = 0.

(2) Notice that for all j > 0, m’ is finitely generated, so m’/m’*" is a finite-dimensional
R/m-vector space. In particular, it is of finite length. Hence, we have a chain of
inclusions

0O=m"cm”'c---cmcR,

where all successive quotients have finite length. Since having finite length is stable
under extensions, we deduce that also R has finite length, and hence R is Artinian (see
Exercise 1 of sheet 2).

(3) Note that for any ideal I and prime ideal p € R, the inclusion I € R gives an inclusion
of localizations I, € R, and it is clear from the definition that I, = I°. Furthermore,
note that R has finitely many prime ideals. Indeed, it has finitely many minimal ones
by Noetherianity, but since R has dimension zero, being a minimal prime and being a
prime is the same.

Now, to the exercise. Let

’Ejj+1g[jg"‘glo

be a descending chain of ideals of R.

Since all localizations at primes R, are Artinian by the local case and there are only
finitely many prime ideals in R, we deduce that for j > 0, (I;41), = (I;), for all primes
ideals p € R. By exactness of localizations, this is the same as saying for (1;/1;41), = 0
for all p and j > 0. We then conclude by Exercise 2 of sheet 12 that I;/I;,; = 0 for
j > 0, so in other words this descending chain of ideals stabilizes.

(4) Let k be a field, and set

R = kzy,05,... 1/ (21,25, ).
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Since R/vV0 = k, we obtain that R has a unique prime ideal (i.e. (x1,,,...)), so

surely R has dimension zero.
2 2 . e
However, set I; = (x7,...,%;_1,%j,Tj41,...) € R. Then these ideals form an infinite

strictly descending sequence of ideals, so R is not Artinian.
OJ



