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Rings and modules Exercises

Sheet 10 - Solutions

Exercise 1. Let G be a �nite group, R an integrally closed domain, K the fraction �eld
of R and let G act on K by (ring) automorphisms such that R is stable under this action,

i.e. g � r " R for all g " G and r " R. Let L �� K
G
be the �xed �eld of the action and set

S �� L =R. In this exercise we show that S is also integrally closed.

(1) Show that each element of K can be written in the form a

b
, where a " R and b " S.

(2) Show that L is the fraction �eld of S.
(3) Show that S is integrally closed.

(4) Show that C�xn
, x

n�1
y, . . . , xy

n�1
, y

n� N C�x, y� is integrally closed.�Hint: Show that there is automorphism of C�x, y� that sends x to e
2πi©n

x and y to

e
2πi©n

y.�
Proof. We denote by � the action of G; the ring multiplication is denoted by the empty
symbol.

(1) Let c

d
" K be an arbitrary element, where c, d " R. Set x � 4gjeG

g � d and a � cx,

b � dx. Note that b j 0 as all the factors are non-zero (as G acts by automorphisms).
Then b �4g"G g � d and thus h � b �4g"G�hg� � d � b for all h " G. Therefore b " S
and c

d
�

a

b
.

(2) As L is a �eld containing S, we have to show that every element of L is a fraction of
elements in S. Let x " L be arbitrary; by the previous point we can write x � a

b
with

b " S. Now as x is �xed by the action of G, we obtain

a

b
� g �

a

b
�

g � a

g � b
�

g � a

b

for all g " G, where in the last step we used b " S. But then we obtain a � g � a
for all g " G, and thus a " S. Hence x is a fraction of elements in S, which proves
Frac�S� � L.

(3) Let x " L be integral over S. Then in particular, x " K it is integral over R, and thus
as R is integrally closed we have x " R. Hence x " L=R � S, and thus S is integrally
closed.

(4) Denote R � C�x, y�, K � C�x, y� and ζ �� e
2πi©n

. By the universal property of C�x, y�
there exists a C-algebra endomorphism ϕ of R mapping x to ζx and y to ζy. This
is easily seen to be bijective, and thus it induces an automorphism Φ of K such that
Φ¶R � ϕ. But then Φ

`n¶R � ϕ
`n
� IdR, and thus Φ

`n
� IdK . So let G � �Φ� be the �nite

subgroup of automorphisms ofK generated by Φ. If we are able to show that S �� K
G
=

R is equal to C�xn
, x

n�1
y, . . . , xy

n�1
, y

n� N C�x, y� then we are done by the previous
point. As every element of C and every monomial among x

n
, x

n�1
y, . . . , xy

n�1
, y

n
is

�xed by ϕ, we may conclude already that C�xn
, x

n�1
y, . . . , xy

n�1
, y

n� N S. Now let

f " R be an element �xed by ϕ, and write f � <i,j fijx
i
y
j
. Then fij � ζ

i�j
fij for all

i, j and hence fij � 0 unless i � j is divisible by n. If i � j is divisible by n then �i, j�
can be expressed as an Z'0-linear combination of �n, 0�, �n� 1, 1� . . . , �1, n� 1�, �0, n�;
simply write i � an � b and j � cn � d with 0 & b, d $ n, then b � d " r0, nx and
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thus either b � d � 0 in which case �i, j� � a�n, 0� � c�0, n�, or b � d � n in which
case �i, j� � a�n, 0�� c�0, n�� �b, d�. Hence every monomial appearing in f with non-
zero coe�cient is inside C�xn

, x
n�1

y, . . . , xy
n�1

, y
n�, and thus also f itself. Therefore

S � C�xn
, x

n�1
y, . . . , xy

n�1
, y

n�, so we are done.

□

Exercise 2. Let k be a �eld. For the following �nitely generated k-algebras R, �nd a
sub-algebra S N R such that S N R is integral and S is isomorphic to a polynomial ring:

(1) R � k�x, y�«�xy � 1�;
(2) R � k�x1, x2, x3, y1, y2, y3�«�x1x2x3 � y1y2y3�;
Proof. The idea is to make a change a variable (hence an automorphism of the polynomial
ring) to get an ideal which is much easier to work with (notice this is exactly what we do
in the proof of Noether's normalization!).

(1) Let z � x � y. Then xy � 1 � �z � y�y � 1 � y
2
� yz � 1. Thus, y satis�es a

monic equation with coe�cients in k �z� which is isomorphic to a polynomial ring, so
S � k �z� � k�x � y� N R does the job.
Before doing the other points, let us rephrase what we have just done in a more precise
way. Let x, y, z denote variables, and let θ � k�x, y� � k�z, y� be the automorphism
sending x to z � y. This automorphism induces

k�x, y�«�xy � 1� 	 k�z, y�«�z � y�y � 1� � k�z, y�«�y2 � zy � 1�
Since y satis�es a monic equation over k�z�, we know by Proposition 8.1.4 in the

notes that k�z� N k�z, y�«�y2 � zy � 1� is an integral extension. Therefore k�x� y� N
k�x, y�«�xy � 1� is also an integral extension. Finally, k�x�y� 	 k�z� is isomorphic to

a polynomial ring, because of the following lemma (apply it to R � k�z�, f � y
2
�zy�1):

Lemma 0.1. Let R be a commutative ring, f " R�y� be a monic polynomial of degree
at least 1. Then R � R�y�©�f� is injective.

Proof. If not, there exists r j 0 such that f divides r. Since f is monic and of degree
at least 1, this is impossible. □

(2) Apply x
¬

1 � x1 � x3, x
¬

2 � x2 � x3 so that the equation becomes

�x¬1 � x3��x¬2 � x3�x3 � y1y2y3 � x
3
3 � x

2
3�x¬1 � x

¬

2� � x3�x¬1x¬2 � y1y2y3

which is monic as a polynomial in k�x¬1, x¬2, y1, y2, y3��x3�. Thus, as before,
S � k �x1 � x3, x2 � x3, y1, y2, y3� N k�x1, x2, x3, y1, y2, y3�«�x1x2x3 � y1y2y3�

works.

□

Exercise 3. Show that the ring

k�x, y, z�«�y3 � y
2
x
2
� yx

2
� x

3
z�

is a domain, and compute its integral closure.
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Proof. The polynomial y
3
� y

2
x
2
� yx

2
� x

3
z is irreducible by Eisenstein's criterion for z, so

this ring is indeed a domain.

For this solution, let R denote the ring we are working with, S its integral closure (which
we want to �nd) and K its �eld of fractions.
Let us �rst show the following general statement:

Lemma 0.2. Let R be a UFD, and let p an irreducible primitive polynomial in R�t�. Then

Frac�R�t�«�p�� 	 Frac�R��t�«�p�
Proof. We know by Gauss lemma that p�t� is irreducible in Frac�R��t�, so since this ring is

a PID, the quotient Frac�R��t�«�p� is a �eld. But for any element in Frac�R��t�«�p�, so
multiple by an element in R lands in R�t�«p�t�, so we win. □

By de�nition, we have

(0.2.a) �y
x

3 � y �y

x

2 � y

x
� z � 0

so y

x
is integral over R. Let ϕ � k�u, v�� R� y

x
� be the map sending u to x and v to y

x
.

This map is surjective, because in the image we have x, y

x
, and hence also y. Finally, we

have z because of equation 0.2.a.
This map is also injective, because otherwise we would obtain an isomorphism

T �� k�u, v�«p 	 R�y
x
�

for some non-zero prime ideal p. But then any element in p gives an algebraic relation
between u and v, so

trdegk�Frac�T �� $ 2

On the other hand, we have by the lemma that

Frac�S� � Frac�R� � k�x, z��y�«�y3 � y
2
x
2
� yx

2
� x

3
z�

which is algebraic over k�x, z�. Hence it transcendence degree is 2, contradiction.
Thus, R� y

x
� 	 k�u, v�, so it is integrall closed, and hence S � R� y

x
�. □

Exercise 4. Let R be a ring. Let M , N be R-modules and I an ideal of R. Prove that
there are isomorphisms of R-modules M iR N 	 N iR M and M iR �RªI� 	 MªIM .

Proof. The solution consists of the following steps.

(1) We �rst prove that M iR N 	 N iR M . For this purpose, we construct mutually
inverse maps from one side to the other. To construct, M iR N � N iR N we just
observe that the map M �N � N iR M given by �m,n�( nim is bilinear. Hence
we obtain a map M iR N � N iR N given on simple tensors by m i n ( n i m.
By swapping the roles of M and N we obtain also a map in the reverse direction, and
the two maps are mutually inverse as their composition is the the identity on simple
tensors (and simple tensors generate the tensor product).
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(2) Let us give two proofs:
Proof 1: The bilinear map M � RªI � MªIM sending �m, r� to rm (it is straight-

forward to see it is well-de�ned) induces

M iR
RªI � MªIM

On the other hand, we have a map M �MiR
RªI sending m to mi1. Furthermore,

any element of the form rm with r " I, m "M in sent to rmi 1 � mi r � 0, so since
these elements generate IM , we deduce a map

MªIM �M iR
RªI

These two maps are inverses of each other, so we win.
Proof 2: We consider the exact sequence 0 � I � R � RªI � 0. Taking its tensor

product with a module M and using right exactness we obtain an exact sequence

I iR M � RiR M � �RªI�iR M � 0.

The middle group RiRM can be identi�ed with M using the map rim( rm. Under
this identi�cation the image of the homomorphism IiRM � RiRM is equal to IM .
This implies that �RªI�iR M is isomorphic to MªIM .

□

Exercise 5. Let R be a ring, and M , N and P be R-modules. Show that there exists a
natural bijection

HomR�M iR N,P � 	 HomR�M,HomR�N,P ��.
Use this to prove that

�iR N � rR-modulesx� rR-modulesx, A( AiR N

is a right exact covariant functor.

Proof. We start by proving that � iR N is a covariant functor. For this we need to assign
to an R-module homomorphism f � M � M

¬
an R-module homomorphism M iR N �

M
¬
iR N , which for conceptual reasons we will denote by f iR idN (but you may also

denote it f iR N if you like). To construct f iR idN , let ι � M h N � M iR N and

ι
¬
� M

¬
h N � M

¬
iR N be the unique R-bilinear maps in the de�nition of the tensor

product. Let f h idN � M h N � M
¬
h N be de�ned by �f h idN��n,m� � �f�n�,m�,

then f h idN is obviously R-linear. The composition ι
¬
` F de�nes an R-bilinear map

M hN �M
¬
iR N . By the universal property of M iR N there exists a unique morphism

f iR idN � M iR N � M
¬
iR N such that ι

¬
` �f h idN� � �f iR idN� ` ι. Notice that on

simple tensors, f iR idN is given by mi n( f�m�i n. We now have to verify points �1�
and �2� in the de�nition of a covariant functor given on the Sheet. It is a very useful thing
to note that as simple tensors generate the tensor product, two maps with domain a tensor
product agree if and only if they agree on simple tensors.

(1) By the above description, idM iR idN maps any simple tensor m i n to m i n, and
thus idM iR idN � idMiRN

(2) Let f � M � M
¬
and f

¬
� M

¬
� M

¬¬
be R-module homomorphisms. Both the map�f ¬iR idN� ` �f iR idN� and the map �f ¬ ` f�iR idN send any simple tensor min to

f
¬�f�m��i n. As simple tensors generate M iR N we hence have �f ¬iR idN� ` �f iR

idN� � �f ¬ ` f�iR idN .
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We now construct the bijection in question. Let ι � M h N � M iR N be the R-bilinear
map from the de�nition of the tensor product. Let f � M iR N � P be an R-module
homomorphism. Then f ` ι �M hN � P is R-bilinear. De�ne the map η�f� � ηM,N,P �f� �
M � HomR�N,P � by

η�f� �M � HomR�N,P �
m( �n " N ( �f ` ι��m,n� " P � .

Using R-bilinearity of f ` ι it is straightforward to verify that this is well-de�ned, i.e. that
η�f��m� " HomR�N,P � an that η is an R-linear map.
To show that η is bijective, we also perform a construction in the reverse direction. Let
F � M � HomR�N,P � be R-linear, then it is straightforward to verify that the map
yF �MhN � P de�ned by yF �m,n� � F �m��n� is R-bilinear. Hence the universal property
of the tensor product gives an R-module homomorphism θ�F � � θM,N,P �F � �M iR N � P

such that θ�F �`ι � yF . We hence obtain a map θ � HomR�M,HomR�N,P ��� HomR�MiR

N,P �.
We now verify that the above two constructions are mutually inverse. Let f �M iRN � P
be R-linear, then

�θ�η�f����mi n� �|η�f��m,n� � η�f��m��n� � �f ` ι��m,n� � f�mi n�
for all simple tensors mi n. As simple tensors generate M iR N we conclude θ�η�f�� � f .
On the other hand, let F � M � HomR�N,P � be R-linear. Then we have for all m " M
and n " N that

��η�θ�F ����m���n� � �θ�F � ` ι��m,n� � yF �m,n� � F �m��n�.
Hence we obtain η�θ�F �� � F .
We conclude that η and θ are mutually inverse (and in particular also θ is R-linear, as η is).
In fact, ηM,N,P is a natural bijection, which means that it is functorial in M,N,P (i.e. it
makes the appropriate commutative diagram commute). We will need only functoriality in

M , so we only show this part: let g � M � M
¬
be an R-module homomorphism. To show

that for �xed N,P , the map ηM �� ηM,N,P is natural in M , means by de�nition that we
need to verify that the diagram

HomR�M iR N,P � HomR�M,HomR�N,P ��
HomR�M ¬

iR N,P � HomR�M ¬
,HomR�N,P ��

ηM

ηM ¬

HomR�giRidN ,P � HomR�g,HomR�N,P ��

commutes. To do so, let f
¬
� M

¬
iR N � P be arbitrary. Then for any m " M and n " N

we have

�ηM ` HomR�g iR idN , P ��f ¬���m��n� � �ηM�f ¬ ` �g iR idN����m��n� �
� f

¬

` �g iR idN� ` ι�m,n� � f
¬�g�m�i n�.

On the other hand, we have

�HomR�g,HomR�N,P �� ` ηM ¬�f ¬���m��n� � �ηM ¬�f ¬� ` g��m��n� � ηM ¬�f ¬��g�m���n� �
� f

¬

` ι
¬�g�m�, n� � f

¬�g�m�i n�.
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As both results agree, the above diagram indeed commutes, and thus the bijection is natural
in M . If you want to verify that it is natural in all components the you need to take
simultaneously R-module homomorphisms M � M

¬
, N � N

¬
and P � P

¬
and show that

the appropriate diagram commutes, but this is more of a language veri�cation and messy
so we omit it here.
We now proceed to show right exactness. Let

0� K � L�M � 0

be an exact sequence of R-modules. We want to show that the sequence

K iR N � LiR N �M iR N � 0

is exact. As we want to use the natural bijection constructed above, we want to apply
HomR��, P � to this sequence and see what happens. To keep track of exactness, this
suggests proving the following lemma.

Lemma 1. Consider R-module homomorphisms α � A � B and β � B � C. If 0 �

HomR�C,P � � HomR�B,P � � HomR�A,P � is exact for all R-modules P , then A
α
� B

β
�

C � 0 is exact. (This is in fact an 'if and only if ' but we don't need it for this exercise.)

Proof. We start by verifying exactness at C, i.e. that β is surjective. To do so, take P �

coker�β�, and let q � C � P be the natural surjection. Note that HomR�β, P ��q� � q`β � 0,
and thus by injectivity of HomR�β, P � we conclude q � 0. Hence coker�β� � 0 which implies
that β is surjective.
Now we verify exactness at B. Take P � C and idC " HomR�C,C�. Then

0 � HomR�α,C� ` HomR�β, C��idC� � β ` α.

Thus im�α� N ker�β�. To verify the reverse inclusion, take P � coker�α� and let p � B � P
be the natural surjection. Then HomR�α, P ��p� � p ` α � 0, and thus by the exactness
assumption we obtain that there exists ϕ " HomR�C,P � such that HomR�β, P ��ϕ� � p.
That is, ϕ ` β � p and in particular ker�β� N ker�p� � im�α�. Hence we have exactness at
B. □

We are now ready to prove right exactness. As HomR��,HomR�N,P �� is left exact, the
sequence

0� HomR�M,HomR�N,P ��� HomR�L,HomR�N,P ��� HomR�K,HomR�N,P ��
is exact. By naturality of η we have a commutative diagram

0 HomR�M,HomR�N,P �� HomR�L,HomR�N,P �� HomR�K,HomR�N,P ��
0 HomR�M iR N,P � HomR�LiR N,P � HomR�K iR N,P �.

ηM ηL ηK

As the vertical arrows are bijective R-module homomorphisms, it is straightforward to verify
that exactness of the top row implies exactness of the bottom row. As hence the bottom row
is exact for any R-module P , the Lemma 1 allows us to conclude that KiRN � LiRN �
M iR N � 0 is exact. Hence �iR N is a right exact covariant functor. □

Exercise 6. Let A be a ring, with A-algebras B and C and an A-module M . Show that:

(1) B iA M naturally has the structure of a B-module,
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(2) B iA C naturally has the structure of an A-algebra,
(3) B iA B naturally has a ring morphism to B.

Proof. (1) Giving a B-module structure on B iA M is equivalent to giving a ring map
λ � B � EndZ�B iA M�. To de�ne λ�b�, note that the map B h M � B iA M
given by �b¬,m� ( �bb¬� i m is A-bilinear. Hence we obtain a map of A-modules
λ�b� � B iA M � B iA M given on simple tensors by λ�b��b¬ im� � �bb¬� im. In
particular, λ�b� is a Z-endomorphism of B iA M . It is then straightforward to verify
that λ�1� � idBiM , λ�b � b

¬� � λ�b� � λ�b¬� and λ�bb¬� � λ�b� ` λ�b¬� for all b, b
¬
" B;

simply check these identities on simple tensors where they easily follow.
(2) First we need to construct a ring structure on B iA C. On simple tensors, it would

be natural to suspect �bi c� � �b¬ i c
¬� � �bb¬�i �cc¬� to work, but of course one needs

to verify that this is well de�ned. A clean way is to do the following: For b " B and
c " C, the map

B h C � B iA C

�b¬, c¬�( �bb¬�i �cc¬�
is easily veri�ed to be A-bilinear, and hence induces an A-linear map λ�b,c� given on

simple tensors by λ�b,c��b¬ i c
¬� � �bb¬� i �cc¬�. Next, one may verify that the map

λa � BhC � EndA�BiAC� given by �b, c�( λ�b,c� is A-bilinear, and hence induces an
A-linear map Λ � BiAC � EndA�BiAC�, given on simple tensors by Λ�bic� � λb,c.

Now for τ, τ
¬
" BiAC we de�ne their product by τ �τ

¬
�� Λ�τ��τ ¬�. On simple tensors

this indeed gives �b i c� � �b¬ i c
¬� � �bb¬� i �cc¬�, and it is straightforward to verify

the axioms of (commutative) ring multiplication. As Λ is a morphism of A-modules,
it is also straightforward that the map A � B iA C given by a ( ai 1 � 1i a gives
B iA C the structure of an A-algebra.

(3) The map BhB � B given by �b, b¬�( bb
¬
is A-bilinear and hence induces an A-linear

map ∆ � B iA B � B, given on simple tensors by ∆�b i b
¬� � bb

¬
. As simple tensors

generate B iA B as an A-module, and hence also as an A-algebra, it su�ces to verify
multiplicativity on simple tensors. This is easily checked.

□

Exercise 7. Prove the following assertions:

(1) Let R be a commutative ring, and let M1 and M2 be free R-modules with basesre1, ..., emx and rf1, ..., fnx respectively. Show that a basis of M1 iR M2 is given byrei i fjx1&i&m
1&j&n

.

(2) Hence show that the element e1if2�e2if1 cannot be written as uiv for any u "M1

and v "M2.

Proof. (1) As we have already seen, tensor products are distributive with respect to direct
sums and for any R-module N , we have N iR R 	 N . Thus, we have

M1 iR M2

	

���1� R
hm

iR R
hn 	

���2� �Rhm
iR R�hn 	

���3� R
hmn

.

Hence, M iR N is free of the right rank. Let us �nd an explicit basis by precisely
remembering what our isomorphisms do. Let wi denote the standard i'th coordinate
vector (which we see both in R

hm
and R

hn
). Then by de�nition, our choice of isomor-

phism �1� sends ei i fj to wi i wj.
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Recall that the isomorphism M iR �S h T �� �M iR S�h �M iR T � is given by

mi �s, t�( �mi s,mi t�.
Hence, isomorphism �2� sends wi i wj to

�wi i 0, . . . , wi i 1, . . . , wi i 0�
where the only wi i 1 term is the j'th one. Finally, in general, the isomorphism
M iR R �M is given by mi r ( rm, so we conclude that the image of the elements
ei i fj through this whole string os isomorphism is

wij � �0, . . . , wi, . . . , 0�.
Since these elements form a basis of R

hmn
, we win.

(2) Suppose we can write e1 i f2 � e2 i f1 � ui v for u "M1 and v "M2. Then writing
u � <i aiei and v � <j bjfj we get e1 i f2 � e2 i f1 � <i,j aibjei i fj. But this is
a linear combination among basis vectors, so we have a1b2 � a2b1 � 1 and all other
aibj � 0. The �rst implies that all of a1, b2, a2, b1 are non-zero, which implies that a1b1
is also non-zero. But this is a contradiction.

□

Exercise 8. We will de�ne the exterior product of a module. This construction is especially
important, for example in di�erential/algebraic geometry when one considers di�erential
forms.
Let R be a commutative ring, and letM be an R-module. For any n % 0, de�ne T

n�M� �
M iR � � � iR M (n times). We also set T

0�M� � R. For any n ' 0, we de�ne �n
M as the

quotient of T
n
M by the submodule I generated by elements of the form

m1 i � � � imn,

with mi � mj for some i j j. The image of m1i� � �imn in�n
M is denoted m10� � �0mn.

Note that if f �M � N is a morphism of R-modules, then it naturally induced a morphism
T

n�f��T n�M�� T
n�N� of R-modules (apply f to each tensor), and passes to the quotient

�n
f ��n

M � �n
N .

From now on, assume that M is free of �nite rank r ' 1, with basis B � re1, . . . , erx.
` Show that �r

M is free with basis e1 0 � � � 0 er, and that �l
M � 0 for any l % r.

` Show that for 0 & i & r, �i
M is free of rank �r

i
�.

Hint: First �nd a the appropriate number of generators. To show that it is a basis
(i.e. the linear independance), wedge it by an appropriate element to get something in
�r

M , where you know an explicit basis.
` Fix the isomorphism θ��r

M � R corresponding to the basis found in the �rst point.
Let f �M � M be an endomorphism, corresponding to a matrix A " Mr�r�R� (with
respect to B). Show that the diagram

�r
M �r

M

R R

θ

�r
f

θ

�det�A�

commutes.
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` Use the above to give a new proof that if A and B are two r � r-matrices, then
det�AB� � det�A� det�B�.

Hint: � is functorial.

Proof. Before anything, let us show the following lemma:

Lemma 0.3. For any n % 0, m1, . . . ,mn "M and σ " Sn � Bijr1, . . . , nx, we have

mσ�1� 0 � � � 0mσ�n� � sgn�σ�m1 0 � � � 0mn.

Proof of the lemma. Since the group Sn is generated by transpositions of the form σi ��i, i � 1�, it is enough to show the result for these elements. Hence, it is enough to show
that

m1 0 � � � 0mi�1 0mi�1 0mi 0 � � � 0mn � �m1 0 � � � 0mn.

Up to wedging on the left by m1 0 � � � 0mi�1 and on the right by mi�2 0 � � � 0mn, we are
left to show that

mi�1 0mi � �mi 0mi�1.

Since by assumption �mi �mi�1� 0 �mi �mi�1� � 0, we obtain that by multilinearity that

0 � mi 0mi �mi 0mi�1 �mi�1 0mi �mi�1 0mi�1.

Since the extremal terms of the right-hand-side are zero by de�nition, we conclude. □

Now, let us start the proof if the exercise.

` By Exercise 7, we know that for any n % 0, a basis of T
n�M� is given by the elements

ei1 i � � � i ein ,

with i1, . . . , in " r1, . . . , rx. By the lemma we just proved, we obtain that each �i
M

is generated by the elements

ei1 0 � � � 0 eir ,

with 1 & i1 $ � � � $ ir & r. This shows immediately that �l
M � 0 for l % r, and that

�r
M is generated by e1 0 � � � 0 er.
Our goal is to show that this element is a basis of 0

r
M . Hence, assuming that there

exists s " R such that s�e1 0 � � � 0 en� � 0, we want to show that s � 0.
Consider the map M

hr
	 R

hr�r
� R given by taking the determinant, where the

isomorphism above is induced by the basis B. Since this map is multilinear, it induces
an R-linear morphism

det�T
r�M�� R.

Furthermore, recall that if a matrix A has two identical colons, then det�A� � 0. Thus,
det induces an R-linear morphism at the level of quotients

det�
r

�M � R.

By de�nition, it sends e1 0 � � � 0 en to 1, so

0 � det�s�e1 0 � � � 0 en�� � s det�e1 0 � � � 0 en� � s.

In particular, s � 0 so this point is proven.
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` For any J � rj1, . . . , jix N B, set eI � ej1 0 � � � 0 eji . By our proof of the previous

point, we know that �i
M is generated by the elements eJ with ¶J¶ � i. Note that

there are exactly �r
i
� of these elements, so our goal is to show that they form a basis.

Assume that there exist elements λJ " R such that

=
¶J¶�i

λJeJ � 0,

and let J
¬
N B with ¶J ¬¶ � i. Denote J

¬

c � B ¯ J ¬
. Then for any J j J

¬
, eJ 0 eJ ¬

c
� 0, so

we obtain that

0 � eJ ¬

c
0=

J

λJeJ � �λJ ¬e1 0 � � � 0 en.

By the previous point, we deduce that λJ ¬ � 0. Doing this for all J
¬
, we conclude.

` Write f�ei� � <j ajiej, so that A � raijxi,j. Then we obtain that

� r

� f� �e1 0 � � � 0 er� � �=
j

aj1ej� 0 � � � 0 �=
j

ajrej�
� =

j1,...,jr

�5
i

ajii� ej1 0 � � � 0 ejr

�

we must have rj1, . . . , jrx � r1, . . . , rx (i.e. i( ji is a permutation) to have a non-zero term

=
σ"Sr

�5
i

aσ�i�i� eσ�1� 0 � � � 0 eσ�r�

�

see the lemma

�=
σ"Sr

sgn�σ�5
i

aσ�i�i� e1 0 � � � 0 er

� det�A��e1 0 � � � 0 er�.
` Let fA�R

hr
� R

hr
denote the morphism corresponding to A (and similarly de�ne fB).

Note that by de�nition, we have �r�fA ` fB� � �r
fA `�r

fB. By the previous point,
we have

det�AB�e1 0 � � � 0 en �� r

��fA ` fB�� �e1 0 � � � 0 en�
� � r

� fA�� r

� fB� �e1 0 � � � 0 en� � � r

� fA� �det�B�e1 0 � � � 0 en�
� det�A� det�B�e1 0 � � � 0 en.

In particular,

det�AB� � det�A� det�B�.
□

Exercise 9. Prove the following:
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(1) Let R be a ring, and let I and J be two ideals such that I � J � R. Prove that
RªI iR

RªJ � 0.
(2) Show that if F N L is a �eld extension, LiF L is a �eld if and only if F � L.

Proof. (1) We give two proofs:
Proof 1:Since I � J � �1�, there are two element i " I and j " J such that i� j � 1.

Consider a simple tensor �r � I�i �s � J�. Then we have

�r � I�i �s � J� � �i � j� � ��r � I�i �s � J�� �
� �i � �r � I��i �s � J� � �r � I�i �j � �s � J�� � 0.

As RªI iR
RªJ is generated by simple tensors, this implies RªI iR

RªJ � 0
Proof 2: By exercise 4, we have

RªI iR
RªJ 	 �RªI�«�J � RªI� � �RªI�«�I � JªI� 	 RªI � J � 0

where the last equality comes from I � J � R.
(2) If F � L, then the ring in question is F iF F , and it holds for any ring R that

R iR R 	 R. This is easily checked to be a ring isomorphism for the ring structure
given by point (2) of Exercise 3.
Conversely, assume that F à L, and we show that LiF L is not a �eld. To do this

it is enough to show that it has a non-zero proper ideal, for a �eld has no non-zero
proper ideals. By the previous point (3) of Exercise 3, there is a ring homomorphism

ϕ � L iF L � L given by b i b
¬
( bb

¬
. This is surjective, but it is not injective.

This is because we will �nd l " L¯F such that r � l i 1 � 1 i l j 0 but ϕ�r� � 0.
Any such r satis�es that ϕ�r� � 0, hence it is su�cient to �nd l " L¯F such that
r � li 1� 1i l j 0. To construct such an l, we apply the universal property of tensor
products. It is enough to exhibit an F -bilinear map θ � L h L � Z of F -modules for
some F -module Z which has di�erent values at �l, 1� and �1, l�, for the bilinear map
factors through L h L � L iF L. As L j F , there is a non-trivial (not equal to the
identity) F -module homomorphism ϕ � L � L such that ϕ�1� � 1 (simply pick an
F -basis starting with 1, send 1 to itself and for example send all the other elements to
0). De�ne θ�a, b� � a � ϕ�b�. Then θ is F -bilinear and since ϕ j id there exists an l
such that ϕ�l� j l. Therefore, θ�1, l� � 1ϕ�l� j l � ϕ�1�l � θ�l, 1�. Thus we are done.

□


