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Exercise 1. Let G be a finite group, R an integrally closed domain, K the fraction field
of R and let G act on K by (ring) automorphisms such that R is stable under this action,
iie. grr€ Rforallge Gandr € R. Let L := K€ be the fixed field of the action and set
S := L n R. In this exercise we show that S is also integrally closed.

(1) Show that each element of K can be written in the form 3, where a € R and b € S.

(2) Show that L is the fraction field of S.

(3) Show that S is integrally closed.

(4) Show that C[z", 2" "y, ..., zy" ™", y"] € C[z, y] is integrally closed.

[ Hint: Show that there is automorphism of C(x,y) that sends x to "
2mi[n
e""y.]

iy and y to

Proof. We denote by - the action of G; the ring multiplication is denoted by the empty
symbol.

(1) Let 5 € K be an arbitrary element, where ¢,d € R. Set x = HQ¢6G g-dand a = cx,

b = dz. Note that b # 0 as all the factors are non-zero (as G acts by automorphisms).
Then b =[] ,cqg-dand thus h-b=T] ,(hg)-d=0forall h € G. Therefore b € S
and < = 3.

(2) As L is a field containing S, we have to show that every element of L is a fraction of
elements in S. Let 2 € L be arbitrary; by the previous point we can write x = £ with

b
b € S. Now as z is fixed by the action of GG, we obtain
a a_g-a _g-a

b7 T gb T b
for all ¢ € GG, where in the last step we used b € S. But then we obtain a = g - a
for all ¢ € GG, and thus a € S. Hence x is a fraction of elements in S, which proves
Frac(S) = L.

(3) Let x € L be integral over S. Then in particular, z € K it is integral over R, and thus
as R is integrally closed we have x € R. Hence x € LN R = S, and thus S is integrally
closed. '

(4) Denote R = C[z,y], K = C(x,y) and ( := ™" By the universal property of C[z,y]
there exists a C-algebra endomorphism ¢ of R mapping = to (z and y to (y. This
is easily seen to be bijective, and thus it induces an automorphism ® of K such that
®|p = ¢. But then | = ¢°" = Idg, and thus ®°" = Idg. Solet G = (®) be the finite

subgroup of automorphisms of K generated by ®. If we are able to show that S := K “n
R is equal to C[z", 2" "y, ..., 2y""",y"] € C[xz,y] then we are done by the previous
point. As every element of C and every monomial among z",z" 'y, ..., zy" ", y" is

fixed by ¢, we may conclude already that C[z", 2" 'y,...,zy" ", y"] € S. Now let
f € R be an element fixed by ¢, and write f = Z” fz-ja:iyj. Then f;; = g”jfij for all
i,j and hence f;; = 0 unless i + j is divisible by n. If i + j is divisible by n then (i, j)
can be expressed as an Z-linear combination of (n,0),(n—1,1)...,(1,n—1),(0,n);

simply write ¢ = an 4+ b and j = cn + d with 0 < b,d < n, then b + d € {0,n} and
1



thus either b = d = 0 in which case (i,j) = a(n,0) + ¢(0,n), or b + d = n in which
case (i,7) = a(n,0) + ¢(0,n) + (b,d). Hence every monomial appearing in f with non-
zero coefficient is inside C[z", 2" 'y, ..., zy""", y"], and thus also f itself. Therefore
S =C[z", 2" "y, ...,2y" ", y"], so we are done.

0

Exercise 2. Let k be a field. For the following finitely generated k-algebras R, find a
sub-algebra S € R such that S € R is integral and S is isomorphic to a polynomial ring:

(1)
(2)

R = Kz,y] [ (zy - 1);
R = k[xbx%x?ny17y27y3]/(1‘1x2x3 + ylyzyg);

Proof. The idea is to make a change a variable (hence an automorphism of the polynomial
ring) to get an ideal which is much easier to work with (notice this is exactly what we do
in the proof of Noether’s normalization!).

(1)

Let 2 = 2x—y. Then ay —1 = (2 +y)y—1 = y2+yz—1. Thus, y satisfies a
monic equation with coefficients in k[Z] which is isomorphic to a polynomial ring, so
S =k[z] = k[T —y] € R does the job.

Before doing the other points, let us rephrase what we have just done in a more precise
way. Let x, y, z denote variables, and let 6 : k[z,y] = k[z,y] be the automorphism
sending x to z + y. This automorphism induces

Ko v] [y = 1) = K01 )y = 1) = Maw] [ (2 4 2y - 1)

Since y satisfies a monic equation over k[Z], we know by Proposition 8.1.4 in the
notes that k[z] € K[z, y]/(y2 + zy — 1) is an integral extension. Therefore k[z -] €

klz, y]/(xy — 1) is also an integral extension. Finally, k[7—¥] = k[Z] is isomorphic to
a polynomial ring, because of the following lemma (apply it to R = k[2], f = v’ +2y+1):

Lemma 0.1. Let R be a commutative ring, f € R[y] be a monic polynomial of degree
at least 1. Then R — R[y]/(f) is injective.

Proof. Tf not, there exists r # 0 such that f divides r. Since f is monic and of degree
at least 1, this is impossible. ([l

Apply x'l =T, — s, x'Q = ry — I3 so that the equation becomes
! ! 3 2 I ! |
(71 + 23) (25 + 23) T3 + Y1Y2ys = 75 + 25(71 + 2) + 23)71T5 + Y1Y2Ys
which is monic as a polynomial in k[, x5, y1, ys, y3 ][23]. Thus, as before,
S=k [fL'_l - T3,l’_2 - IE_3, E, %, %] c k[xla L2, T3, Y1, Y2, y3]/(x1x2x3 + ylyzyg)

works.

Exercise 3. Show that the ring

k[x7y7 Z]/(y3 + y2$2 + yl’z + ZL‘BZ)

is a domain, and compute its integral closure.



3

Proof. The polynomial y3 + y2x2 + ny +2°2 is irreducible by Eisenstein’s criterion for z, so
this ring is indeed a domain.

For this solution, let R denote the ring we are working with, S its integral closure (which
we want to find) and K its field of fractions.
Let us first show the following general statement:

Lemma 0.2. Let R be a UFD, and let p an irreducible primitive polynomial in R[t]. Then
Frac(R[t]/(p)) = Fl"aC(R)[t]/(p)

Proof. We know by Gauss lemma that p(t) is irreducible in Frac(R)[t], so since this ring is
a PID, the quotient FY&C(R)[t]/(p) is a field. But for any element in FI"HLC(R)[LL]/(p)7 SO

multiple by an element in R lands in R[t]/p(t), SO we win. O

ROE

so £ is integral over R. Let ¢ : k[u,v] — R[%] be the map sending u to T and v to £.

By definition, we have

+2=0

SN
sll<|

(0:2. (

8] |
8] |

This map is surjective, because in the image we have Z, %, and hence also y. Finally, we
have z because of equation 0.2.a.
This map is also injective, because otherwise we would obtain an isomorphism

T o= ku,v] /g = R[%]

for some non-zero prime ideal p. But then any element in p gives an algebraic relation
between u and v, so

trdeg, (Frac(T)) < 2
On the other hand, we have by the lemma that

Frac(S) = Frac(R) = k(z, z)[y]/(y3 + e +yz’ + 2°2)

which is algebraic over k(z,z). Hence it transcendence degree is 2, contradiction.
Thus, R[2] = k[u,v], so it is integrall closed, and hence S = R[£]. O

Exercise 4. Let R be a ring. Let M, N be R-modules and [ an ideal of R. Prove that
there are isomorphisms of R-modules M @ zk, N = N @ M and M ®p (R/[) = M/[]\/[.

Proof. The solution consists of the following steps.

(1) We first prove that M ® R N = N ®r M. For this purpose, we construct mutually
inverse maps from one side to the other. To construct, M ® p, N - N & N we just
observe that the map M X N - N ® z M given by (m,n) — n ® m is bilinear. Hence
we obtain a map M ® gy N = N ®p N given on simple tensors by m ® n = n & m.
By swapping the roles of M and N we obtain also a map in the reverse direction, and
the two maps are mutually inverse as their composition is the the identity on simple
tensors (and simple tensors generate the tensor product).
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(2) Let us give two proofs:
Proof 1: The bilinear map M x £2/1 — M [ 17 sending (m,T) to rm (it is straight-
forward to see it is well-defined) induces

Mep R[> My

On the other hand, we have a map M —» M ®p R/[ sending m to m ® 1. Furthermore,
any element of the form rm with r € I, m € M in sent torm® 1 =m ®7r = 0, so since
these elements generate I M, we deduce a map

My - Meg Rl f

These two maps are inverses of each other, so we win.
Proof 2: We consider the exact sequence 0 - [ - R — R/] — (. Taking its tensor
product with a module M and using right exactness we obtain an exact sequence

The middle group R® M can be identified with M using the map r ® m — rm. Under
this identification the image of the homomorphism I @ , M - R®p M is equal to M.
This implies that (R/]) ®p M is isomorphic to M/[M.

O

Exercise 5. Let R be a ring, and M, N and P be R-modules. Show that there exists a
natural bijection
HOmR(M ®R N, P) = HOIHR(M, HOHlR(N, P))
Use this to prove that
— ®r N : {R-modules} —» {R-modules}, A+ A®p N
is a right exact covariant functor.

Proof. We start by proving that — ® p N is a covariant functor. For this we need to assign
to an R-module homomorphism f : M — M "an R-module homomorphism M ®z N —
M' ®r N, which for conceptual reasons we will denote by f ®x idy (but you may also
denote it f ®p N if you like). To construct f ®pidy, let ¢ : M @ N - M ®p N and
/'t M &N - M ®g N be the unique R-bilinear maps in the definition of the tensor
product. Let f @ idy : M @ N - M @& N be defined by (f @ idy)(n,m) = (f(n),m),
then f & idy is obviously R-linear. The composition ' o F defines an R-bilinear map
M &N — M ®p N. By the universal property of M ®z N there exists a unique morphism
f®pidy : M®g N = M ®g N such that ¢ o (f @ idy) = (f ®gidy) o ¢. Notice that on
simple tensors, f ®p idy is given by m ® n — f(m) ® n. We now have to verify points (1)
and (2) in the definition of a covariant functor given on the Sheet. It is a very useful thing
to note that as simple tensors generate the tensor product, two maps with domain a tensor
product agree if and only if they agree on simple tensors.
(1) By the above description, idy; ® pidy maps any simple tensor m ® n to m ® n, and
thus idy, ®pidy = idye,N
(2) Let f: M — M and f' : M' - M" be R-module homomorphisms. Both the map
(f' ®pidy) o (f ®gidy) and the map (f' o f) ®gidy send any simple tensor m ® n to
F'(f(m)) ® n. As simple tensors generate M ® p N we hence have (f ®zidy) o (f ®g
idy) = (f'o f) ®gidy.
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We now construct the bijection in question. Let ¢ : M @ N — M ®r N be the R-bilinear
map from the definition of the tensor product. Let f : M ® s N — P be an R-module
homomorphism. Then fo.: M &N — P is R-bilinear. Define the map n(f) = ny np(f) :
M — Homp(N, P) by

n(f) : M - Hompg(N, P)

me (n€ N (for)(m,n) €P).

Using R-bilinearity of f o ¢ it is straightforward to verify that this is well-defined, i.e. that
n(f)(m) € Homz(N, P) an that n is an R-linear map.
To show that 7 is bijective, we also perform a construction in the reverse direction. Let
F : M - Hompg(N,P) be R-linear, then it is straightforward to verify that the map
F:M&N — P defined by F(m,n) = F(m)(n) is R-bilinear. Hence the universal property
of the tensor product gives an R-module homomorphism 6(F') = 6y, y p(F) : M ®z N - P
such that §(F)or = F. We hence obtain a map 6 : Homp(M, Homg(N, P)) - Homp(M ® 5
N, P).
We now verify that the above two constructions are mutually inverse. Let f : M ® zy N — P
be R-linear, then

() m @ n) = n(F)(m,n) = n(f)(m)(n) = (f o 1)(m,n) = f(m & n)

for all simple tensors m ® n. As simple tensors generate M ® p N we conclude 0(n(f)) = f.
On the other hand, let F : M — Hompg(N, P) be R-linear. Then we have for all m € M
and n € N that

[(n(6(F)))(m)](n) = (O(F) o :)(m,n) = F(m,n) = F(m)(n).

Hence we obtain n(0(F)) = F.

We conclude that n and 0 are mutually inverse (and in particular also € is R-linear, as 7 is).
In fact, 7y n p is a natural bijection, which means that it is functorial in M, N, P (i.e. it
makes the appropriate commutative diagram commute). We will need only functoriality in
M, so we only show this part: let g : M — M' be an R-module homomorphism. To show
that for fixed N, P, the map 7y, := ny n p is natural in M, means by definition that we
need to verify that the diagram

Homp(M @5 N, P) —% Homp(M, Hompz(N, P))
HomR(g@JRidN,P)T THomR(g,HomR(N,P))
Homp(M' ®5 N, P) —22% Homp(M', Homp(N, P))

commutes. To do so, let f': M' ® s N = P be arbitrary. Then for any m € M and n € N
we have

[nar © Homp(g ®g idy, P)(f)1(m)(n) = [nu(f o (g ®ridy))1(m)(n) =
= f' o (g ®pidy) 0 t(m,n) = f'(g(m) ®n).
On the other hand, we have
[Homp(g, Homg(N, P)) o map(f)1(m)(n) = [man(f') © g1(m)(n) = nap(f)(g(m))(n) =
= f o (g(m),n) = f'(g(m) ®n).
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As both results agree, the above diagram indeed commutes, and thus the bijection is natural
in M. If you want to verify that it is natural in all components the you need to take
simultaneously R-module homomorphisms M — M ''N - N'and P —» P' and show that
the appropriate diagram commutes, but this is more of a language verification and messy
so we omit it here.

We now proceed to show right exactness. Let

0-K->L->M=0
be an exact sequence of R-modules. We want to show that the sequence
K@RN—)L®RN—)M®RN_)O

is exact. As we want to use the natural bijection constructed above, we want to apply
Homp(—, P) to this sequence and see what happens. To keep track of exactness, this
suggests proving the following lemma.

Lemma 1. Consider R-module homomorphisms o« : A - B and f§ : B - C. If 0 —
Homp(C, P) » Homp(B, P) » Homp(A, P) is ezact for all R-modules P, then A > B 4

C — 0 is exact. (This is in fact an ’if and only if’ but we don’t need it for this exercise.)

Proof. We start by verifying exactness at (', i.e. that [ is surjective. To do so, take P =
coker(f3), and let ¢ : C' = P be the natural surjection. Note that Homp (3, P)(q) = go8 = 0,
and thus by injectivity of Hompg(3, P) we conclude ¢ = 0. Hence coker(3) = 0 which implies
that [ is surjective.

Now we verify exactness at B. Take P = C and idg € Homp(C, C). Then

0 = Hompg(a, C') o Homp(3,C)(ide) = S o a.

Thus im(«) € ker(3). To verify the reverse inclusion, take P = coker(a) and let p: B —» P
be the natural surjection. Then Homp(a, P)(p) = p o o = 0, and thus by the exactness
assumption we obtain that there exists ¢ € Homp(C, P) such that Homp(3, P)(¢) = p.
That is, ¢ o 8 = p and in particular ker(3) € ker(p) = im(«). Hence we have exactness at
B. [l

We are now ready to prove right exactness. As Hompg(—, Homz(N, P)) is left exact, the
sequence

0 —» Hompz(M,Hompg(N, P)) » Homp(L, Homg(N, P)) - Homz(K, Homz(N, P))
is exact. By naturality of n we have a commutative diagram

0 —— Hompz(M,Hompz(N, P)) —— Homp(L,Hompz(N, P)) —— Homp (K, Homg(N, P))

] al ]

O % HOHIR(M ®RN,P) % HOHIR(L®RN,P) % HomR(K®RN7P).

As the vertical arrows are bijective R-module homomorphisms, it is straightforward to verify
that exactness of the top row implies exactness of the bottom row. As hence the bottom row
is exact for any R-module P, the Lemma 1 allows us to conclude that K @z, N - L&z N —
M ®r N — 0 is exact. Hence — ® 3z N is a right exact covariant functor. O

Exercise 6. Let A be a ring, with A-algebras B and C and an A-module M. Show that:
(1) B ® 4 M naturally has the structure of a B-module,



(2)
(3)

B ® 4 C naturally has the structure of an A-algebra,
B ® 4 B naturally has a ring morphism to B.

Proof. (1) Giving a B-module structure on B ® 4 M is equivalent to giving a ring map

A B - Endy(B ®,4 M). To define \(b), note that the map B& M — B ®4 M
given by (b',m) + (bb') ® m is A-bilinear. Hence we obtain a map of A-modules
AMb): B®4 M — B®,4 M given on simple tensors by A(b)(b' ® m) = (bb') ® m. In
particular, \(b) is a Z-endomorphism of B ® 4 M. Tt is then straightforward to verify
that M(1) = idgen, Mb+0) = A(B) + A(b') and A(Bb') = A(b) o (') for all b,b' € B;
simply check these identities on simple tensors where they easily follow.
First we need to construct a ring structure on B ® 4 C. On simple tensors, it would
be natural to suspect (b® ¢) - (b'® ¢') = (bb') ® (cc') to work, but of course one needs
to verify that this is well defined. A clean way is to do the following: For b € B and
c € C, the map

Be(C->B®,C

(b, - (b)) ® (cc')
is easily verified to be A-bilinear, and hence induces an A-linear map A, ) given on
simple tensors by )\(b,c)(b' ®c) = (bb') ® (¢c'). Next, one may verify that the map
Aot BoC — Endy(B®4C) given by (b, c) = A is A-bilinear, and hence induces an
A-linear map A : B® 4, C — End (B ®4C), given on simple tensors by A(b®c) = \y..
Now for 7,7 € B® 4 C we define their product by 7-7 := A(7)(r'). On simple tensors
this indeed gives (b ® ¢) - (' ® ¢') = (bb') ® (¢c'), and it is straightforward to verify
the axioms of (commutative) ring multiplication. As A is a morphism of A-modules,
it is also straightforward that the map A - B®,C given by a = a® 1 =1 ® a gives
B ® 4 C the structure of an A-algebra.
The map B® B — B given by (b,b') = bb' is A-bilinear and hence induces an A-linear
map A : B®,4 B — B, given on simple tensors by A(b ® b') = bb'. As simple tensors
generate B ® 4 B as an A-module, and hence also as an A-algebra, it suffices to verify

multiplicativity on simple tensors. This is easily checked.
O

Exercise 7. Prove the following assertions:

(1)

(2)

Let R be a commutative ring, and let M; and M, be free R-modules with bases
{ei,....,em} and {f1,..., [n} respectively. Show that a basis of M; ® M, is given by

{ei ® fj}lSiSm.

1<jsn
Hence show that the element ¢; ® f, + e, ® f; cannot be written as u® v for any u € M,

and v € M,.

Proof. (1) As we have already seen, tensor products are distributive with respect to direct

sums and for any R-module N, we have N @ p R = N. Thus, we have
= em en = em en emn
M, ®p My =01y R*" @z R™" Sy (R*" @ R) >3y R™™.

Hence, M ®r N is free of the right rank. Let us find an explicit basis by precisely
remembering what our isomorphisms do. Let w; denote the standard i’th coordinate
vector (which we see both in R®™ and R®"). Then by definition, our choice of isomor-
phism (1) sends e; ® f; to w; ® w;.



Recall that the isomorphism M @z (S@T) - (M ®r S) & (M ®; T') is given by
me (s, t)» (m®s,m®et).
Hence, isomorphism (2) sends w; ® w; to
(w; ®0,...,w;®1,...,w; ®0)

where the only w; ® 1 term is the j'th one. Finally, in general, the isomorphism
M ®r R — M is given by m ® r = rm, so we conclude that the image of the elements
e; ® f; through this whole string os isomorphism is

= (0,... Z,...,O).

Since these elements form a basis of R®™, we win.

(2) Suppose we can write e; ® fo + e, ® fi = u ® v for u € M; and v € M,. Then writing
u =) ae; and v = Zj bif; we get e; ® fo+ ey ® f; = Z” a;bje; ® f;. But this is
a linear combination among basis vectors, so we have a;by = asb; = 1 and all other
a;b; = 0. The first implies that all of a;, by, as, by are non-zero, which implies that a,b,

is also non-zero. But this is a contradiction.
OJ

Exercise 8. We will define the exterior product of a module. This construction is especially
important, for example in differential /algebraic geometry when one considers differential
forms.

Let R be a commutative ring, and let M be an R-module. For any n > 0, define T" (M) :=
M®p -+ ®z M (n times). We also set T°(M) = R. For any n = 0, we define A" M as the
quotient of 7" M by the submodule I generated by elements of the form

m1®"'®mn,

with m; = m; for some 7 # j. The image of m;®---®m,, in A" M is denoted my A+ - - Am,,.
Note that if f: M — N is a morphism of R-modules, then it naturally induced a morphism
T"(f): T"(M) —» T"(N) of R-modules (apply f to each tensor), and passes to the quotient
/\nf: /\n]\/[ — /\nN.
From now on, assume that M is free of finite rank r > 1, with basis B = {e,..., e, }.
o Show that A" M is free with basis e; A -+ - A e,, and that /\l M =0 for any [ > r.
o Show that for 0 <i <, A" M is free of rank (:)
Hint: First find a the appropriate number of generators. To show that it is a basis
(i.e. the linear independance), wedge it by an appropriate element to get something in
A" M, where you know an explicit basis.
o Fix the isomorphism 6: A" M — R corresponding to the basis found in the first point.
Let f: M — M be an endomorphism, corresponding to a matrix A € M,y,.(R) (with
respect to ). Show that the diagram

INSVEEAENYNSY;

\L <det(A)

R———— R

T =

commutes.



o Use the above to give a new proof that if A and B are two r X r-matrices, then
det(AB) = det(A) det(B).
Hint: \ is functorial.

Proof. Before anything, let us show the following lemma:
Lemma 0.3. For anyn >0, my,...,m, € M and o € S, := Bij{1,...,n}, we have
Moy N =" N M) = sgn(a)m1 AN Am,.

Proof of the lemma. Since the group S, is generated by transpositions of the form o; =
(i,7 + 1), it is enough to show the result for these elements. Hence, it is enough to show
that

My A Ay Ay, AT Ao Ay, = —my A -+ Am,.
Up to wedging on the left by m; A -+ Am,;_; and on the right by m;,o A -+« A m,,, we are
left to show that
My A = =My A My
Since by assumption (m; + m;q) A (m; + m;.1) = 0, we obtain that by multilinearity that
O=m; Amy; +m; Ay + My Amy + My A Mg,

Since the extremal terms of the right-hand-side are zero by definition, we conclude. 0]

Now, let us start the proof if the exercise.

o By Exercise 7, we know that for any n > 0, a basis of T" (M) is given by the elements
B,L'l ®"'®€in7

with 7;,...,4, € {1,...,r}. By the lemma we just proved, we obtain that each /\l M
is generated by the elements

e, N Ae

1] T )
with 1 <¢; < -+ <4, < r. This shows immediately that /\l M =0 for [ > r, and that
A" M is generated by e; A - -+ Ae,.

Our goal is to show that this element is a basis of A" M. Hence, assuming that there
exists s € R such that s(e; A --- Ae,) =0, we want to show that s = 0.

Consider the map M®" = R®™" — R given by taking the determinant, where the
isomorphism above is induced by the basis B. Since this map is multilinear, it induces
an R-linear morphism

det:T"(M) > R

Furthermore, recall that if a matrix A has two identical colons, then det(A) = 0. Thus,
det induces an R-linear morphism at the level of quotients

det: \ M - R.
By definition, it sends e; A -+ - A e, to 1, so
0 =det(s(e; A---Ae,))=sdet(eg A+ Ae,) =s.

In particular, s = 0 so this point is proven.



10

o For any J = {ji,...,j;} € B, set e; == e;, A+++ Aej,. By our proof of the previous
point, we know that A" M is generated by the elements e; with |J| = i. Note that

there are exactly (:) of these elements, so our goal is to show that they form a basis.
Assume that there exist elements \; € R such that

Z Ajer =0,

|7]=i

and let J' € B with |J'| = i. Denote J. :== B\ J'. Then for any J # J', e; A ey =0, 50
we obtain that

O=€J2AZ)\J€J=i)\J'€1/\"‘/\€n.
J

By the previous point, we deduce that Ay = 0. Doing this for all J', we conclude.
o Write f(e;) = Zj aj;ej, so that A = {a;;}; ;. Then we obtain that

() tmonea= (s [e)

J J

Z (ﬂ%i)% Acoe A,

Jiseensder \ 0

? Z (1_[ aa(z‘)z‘) €o(1) A7t NEo(r)

g€ES,. i

we must have {j;,...,7,.} = {1,...,7} (i-e. i » j; is a permutation) to have a non-zero term

? ( Z sgn(o) l__[%(i)z’)€1 A Ae,

o€ES,.

=det(A)(e; A -+ Ae,).

o Let f4: R®" — R®" denote the morphism corresponding to A (and similarly define fg).
Note that by definition, we have A"(f40 fz) = A" fae A" f5. By the previous point,
we have

det(AB)ey A--+Ae, = (/\(fA ° fB)) (ex A-v-Aey,)

= (/\fA)(/\fB)(el/\-H/\en) = (/\fA)(det(B)el/\n-/\en)
= det(A)det(B)e; A --- Ae,,.

In particular,
det(AB) = det(A) det(B).

Exercise 9. Prove the following:



(1)
(2)

11

Let R be a ring, and let [ and J be two ideals such that I + J = R. Prove that
R/] ®r R/J =0.
Show that if F' € L is a field extension, L ® » L is a field if and only if F' = L.

Proof. (1) We give two proofs:

Proof 1:Since I + J = (1), there are two element 7 € I and j € J such that i+ j = 1.
Consider a simple tensor (r + I) ® (s + J). Then we have

(r+)@(s+J)=(G+7)-((r+I)®(s+J)) =
=(G-(r+1)®(s+J)+(r+1)®(j-(s+J))=0.

As R/] ®r R/j is generated by simple tensors, this implies R/] ®r R/J =0
Proof 2: By exercise 4, we have

RirepRly=(BI0)](y-Rjp)y=(BID)](1+J/5)= Rl1+ =0

where the last equality comes from I + J = R.

If F = L, then the ring in question is F' ® p F', and it holds for any ring R that
R ®z R = R. This is easily checked to be a ring isomorphism for the ring structure
given by point (2) of Exercise 3.

Conversely, assume that F' € L, and we show that L ® » L is not a field. To do this
it is enough to show that it has a non-zero proper ideal, for a field has no non-zero
proper ideals. By the previous point (3) of Exercise 3, there is a ring homomorphism
¢ L®r L — L given by b ® b' — bb. This is surjective, but it is not injective.
This is because we will find [ € L\F such that r =1 ® 1 —=1® 1 # 0 but ¢(r) = 0.
Any such r satisfies that ¢(r) = 0, hence it is sufficient to find [ € L\F such that
r=[{®1—-1®1[ # 0. To construct such an [, we apply the universal property of tensor
products. It is enough to exhibit an F-bilinear map 6 : L & L — Z of F-modules for
some F-module Z which has different values at (I,1) and (1,1), for the bilinear map
factors through L® L — L ®p L. As L # F, there is a non-trivial (not equal to the
identity) F-module homomorphism ¢ : L — L such that ¢(1) = 1 (simply pick an
F-basis starting with 1, send 1 to itself and for example send all the other elements to
0). Define 6(a,b) = a - ¢(b). Then 6 is F-bilinear and since ¢ # id there exists an [
such that ¢(l) # [. Therefore, 0(1,1) = 1¢(1) # 1 = ¢(1)I = 6(l,1). Thus we are done.

OJ



