Lecture 14

In this final lecture of the course we shall prove the Nullstellensatz and some facts about primary decompositions of ideals on Noetherian rings.

1 Nullstellensatz

Let K be an algebraic closed field. For $c_1, \cdots, c_n \in K$ denote by $m_{c_1, \cdots, c_n} \subset K[x_1, \cdots, x_n]$ denote the ideal $(x_1 - c_1, \cdots, x_n - c_n)$.

Proposition 1 (Weak Nullstellensatz). Every maximal ideal of $K[x_1, \dots, x_n]$ is of the form m_{c_1, \dots, c_n} for some $c_i \in K$.

Proof. Clearly, every ideal of the form m_{c_1,\cdots,c_n} is maximal (this holds true in general, even if K is not algebraically closed). Now, let $m \in K[x_1,\cdots,x_n]$ be a maximal ideal. Then $K[x_1,\cdots,x_n]/m$ is a field. Hence, we know from previous lectures that $K[x_1,\cdots,x_n]/m$ must be a finite extension of K, hence it must be isomorphic to K itself since K is algebraically closed. So the composition $K \to K[x_1,\cdots,x_n] \xrightarrow{\pi} K[x_1,\cdots,x_n]/m$ must be an isomorphism, and we can use it to identify K with $K[x_1,\cdots,x_n]/m$ in a natural way. Let now $c_i:=\pi(x_i)$, so $c_i\in K$ due to the identification from before. Note that $x_i-c_i\in m$ since $m=\ker(\pi)$ and $\pi(x_i-c_i)=c_i-c_i=0$. This implies that $m_{c_1,\cdots,c_n}\subset m$ and since the former is maximal we conloude that $m_{c_1,\cdots,c_n}=m$.

Note that the main ingredient needed to prove the weak Nullstellensatz is Noether normalization (together with the fact that if $R \subset S$ is an integral extension of domains, then R is a field if and only if S is a field).

Let now $I\subset K[x_1,\cdots,x_n]$ be an ideal. Recall that $V(I)\subset K^n$ denotes the vanishing locus of I, that is, V(I) is the Zariski closed subset

$$V(I) = \{(c_1, \dots, c_n) \in K^n : f(c_1, \dots, c_n) = 0 \text{ for every } f \in I\}.$$

Since $K[x_1, \dots, x_n]$ is Noetherian we know that I is finitely generated, so we can write $I = (f_1, \dots, f_k)$ for some $f_i \in K[x_1, \dots, x_n]$ and therefore

$$V(I) = \{(c_1, \dots, c_n) \in K^n : f_i(c_1, \dots, c_n) = 0 \text{ for } i = 1, \dots, k\}.$$

Given any subset $Z \subset K^n$ one denotes by $I(Z) \subset K[x_1, \dots, x_n]$ the ideal given by $\{f \in K[x_1, \dots, x_n] : f(z) = 0 \text{ for every } z \in Z\}$. Note that I(Z) is always a radical ideal (why?).

Lemma 2. For an ideal $I \subset K[x_1, \dots, x_n]$, we have I = (1) if and only if $V(I) = \emptyset$.

Proof. Clearly $V(1) = \emptyset$. Now, assume that $V(I) = \emptyset$ and assume that $I \neq (1)$. Then there is a maximal ideal m_{c_1, \dots, c_n} containing I, which implies that $(c_1, \dots, c_n) \in V(I)$, absurd.

Theorem 3 (Nullstellensatz). Let K be an algebraically closed field and let $I \subset K[x_1, \cdots, x_n]$ be an ideal. Then $I(V(I)) = \sqrt{I}$.

Proof. The inclusion $\sqrt{I} \subset I(V(I))$ is clear, so we only need to prove that $I(V(I)) \subset \sqrt{I}$. Take $g \in I(V(I))$. We want to show that there is some n > 0 such that $g^n \in I$. Equivalently, we want to show that $\bar{g} \in R := K[x_1, \cdots, x_n]/I$ is nilpotent, where as usual \bar{g} denotes the image of g under the quotient map.

Note that for a commutative ring R and an element $r \in R$, we have that the localization R_r is the zero ring if and only if r is nilpotent (check this). So, it is enough to show that $R_{\bar{q}} = 0$ in our case.

We know how to explicitly construct the locazitaion of a ring at one element: $R_{\bar{g}} = R[x_{n+1}]/(x_{n+1}\bar{g}-1)$. Using the correspondence theorem, if we write $I = (f_1, \dots, f_k)$, we also have

$$R_{\bar{q}} = K[x_1, \cdots, x_n, x_{n+1}]/(f_1, \cdots, f_k, x_{n+1}g - 1).$$

So our aim is to show that $J := (f_1, \dots, f_k, x_{n+1}g - 1) = (1)$, i.e., that $V(J) = \emptyset$ due to the Lemma before.

So, assume that $(c_1, \cdots, c_n, c_{n+1}) \in V(J)$. This implies in particular that $(c_1, \cdots, c_n) \in V(I)$ by construction. But then $g(c_1, \cdots, c_n) = 0$ as well, because $g \in I(V(I))$. Finally, we have the contradiction

$$0 = c_{n+1}q(c_1, \cdots, c_n) - 1 = -1.$$

2 Primary decomposition

Let again K be an algebraically closed field and consider an ideal $I \subset K[x_1, \cdots, x_n]$. We claimed that the associated Zariski closed subset (or algebraic variety) $V(I) \subset K^n$ can be decomposed into irreducible Zariski closed subsets. We recall that a topological space V is irreducible if when we write $V = V_1 \cup V_2$ with $V_1, V_2 \subset V$ closed, then necessarily $V_1 = V$ or $V_2 = V$. In a previous lecture, we proved that V(I) is irreducible if and only if I is a prime ideal. Using the Nullstellensatz, it also follows that a Zariski closed $V \subset K^n$ is irreducible if and only if I(V) is prime.

Now, if $V(I) = \bigcup V_i$ is a decomposition into irreducible components, then

$$I(V(I)) = \sqrt{I} = \bigcap_{i} I(V_i).$$

Hence, the existence of the decomposition into irreducible components translates to algebra into: every radical ideal of $K[x_1, \cdots, x_n]$ can be written as an intersection of prime ideals (this is, in fact, true in general for every Noetherian ring).

The primary decomposition of ideals is a stronger statement which works for any ideal (not necessarily radical) in any Noetherian ring.

Definition 4. Let R be a ring. An ideal $I \subset R$ is primary if for every $x, y \in R$ such that $xy \in I$, if $x \notin I$ then $y^n \in I$ for some n > 0.

In other words: an ideal $I \subset R$ is primary if every zero-divisor of R/I is nilpotent.

Proposition 5. If $I \subset R$ is primary, then \sqrt{I} is prime, and is the smallest prime ideal containing I.

Proof. Let $x, y \in R$ be such that $xy \in \sqrt{I}$ and assume that $x \notin \sqrt{I}$. For some n > 0 we have $x^ny^n \in I$, and since $x \notin \sqrt{I}$ we also have $x^n \notin I$. Since I is primary, there is some m > 0 such that $(y^n)^m \in I$. But then $y \in \sqrt{I}$, so \sqrt{I} is prime.

The fact that \sqrt{I} is the smallest prime containing I is obvious, since for any prime ideal q such that $I \subset q$ we have $\sqrt{I} \subset q$.

If I is primary and $p = \sqrt{I}$, we say that I is p-primary. Example.

- 1. If an ideal I is such that \sqrt{I} is prime, then I is not necessarily primary. As an example one can take the ideal $I=(xy,y^2)\subset K[x,y]$ for K any field. Since $(y)^2\subset I\subset (y)$ we have that $\sqrt{I}=(y)$, which is prime. On the other hand, I is not primary, because $xy\in I$, $y\notin I$ and $x^n\notin I$ for any n>0.
- 2. If $p \subset R$ is a prime ideal, then p^n is not necessarily p-primary. Consider $R = K[x,y,z]/(xy-z^2)$, and denote by \bar{x},\bar{y},\bar{z} the images of the variables in R. Let $I=(\bar{x},\bar{z})\subset R$. Now $R/I=K[x,y,z]/(xy-z^2,x,z)=K[y]$, so I is prime. We want to show that I^2 is not primary. But $I^2=(\bar{x}^2,\bar{z}^2,\bar{x}\bar{z})=(\bar{x}^2,\bar{x}\bar{y},\bar{x}\bar{z})$. So $\bar{x}\bar{y}\in I^2$ but $\bar{x}\notin I^2$ and $\bar{y}^n\notin I^2$ for any n>0, for otherwise $\bar{y}\in \sqrt{I^2}=I$, which is impossible since $R/I\cong K[y]$.
- 3. If I is p-primary, then I is not necessarily a power of p. To check this, simply consider $I=(x,y^2)\subset K[x,y]$. The fact that I is (x,y)-primary will follow from Proposition 6. But $(x,y)^2\subsetneq I\subsetneq (x,y)$, and it is easy to verify that all the inclusions are strict.
- 4. Finally, this last example shows that primary ideals are hard if not impossible to classify. Consider the ideal $I_a=(x^2,y^2,xy,ax+y)\subset K[x,y]$, where $a\in K$. This is (x,y)-primary again due to Proposition 6, and we also have $(x,y)^2\subset I_a\subset (x,y)$. We now show that if $a\neq b$ then $I_a\neq I_b$. In fact, if $\alpha x+\beta y\in I_a$ for some $\alpha,\beta\in K$ then $\alpha x+\beta y=k\cdots (ax+y)$ for some $k\in K$ necessarily. But then $k\beta$ and hence $\beta\neq 0$ and $\alpha/\beta=a$.

On the other hand, we have

Proposition 6. Let $I \subset R$ be an ideal such that $\sqrt{I} = m$ is a maximal ideal. Then I is m-primary.

Proof. We prove that every zero-divisor in R/I is nilpotent. The nilradical of R/I is $n=\sqrt{I}/I$, which is also a maximal ideal, because its contraction under the quotient map $R\to R/I$ is maximal. Since every prime ideal contains the nilradical this shows that n is also the only prime ideal of R/I. But then every element of $R/I\setminus n$ is a unit for otherwise it would be contained in some maximal ideal. Finally, take a zero-divisor $x\in R/I$. Then x cannot be a unit, hence $x\in n$, hence it is nilpotent.

All ideals now are considered to be proper ideals.

Definition 7. Let R be a ring.

- An ideal $I \subset R$ is irreducible if $I = I_1 \cap I_2$ then either $I = I_1$ or $I = I_2$.
- An ideal I is decomposable if we can write $I = \bigcap_{j=1}^n I_j$ where each I_j is irreducible.

Note in particular that every irreducible ideal is decomposable. The next two propositions show two very interesting consequences of the Noetherianity assumption:

Proposition 8. In a Noetherian ring every ideal is decomposable.

Proof. Consider the set S of all ideals of R which are not decomposable, ordered by inclusion. Take a maximal element $I \in S$, which exists because R is Noetherian. Since I is not decomposable it cannot be irreducible and we can write $I = I_1 \cap I_2$ for $I \subsetneq I_1, I_2 \subsetneq R$. But then $I_1, I_2 \notin S$ due to the maximality of I, so they are both decomposable. But then both I_1 and I_2 can be written as a finite intersection of irreducible ideals, and hence also I, which is a contradiction.

The connection between irreducibility and being primary also works in general only for Noetherian rings:

Proposition 9. Let R be Noetherian and let $I \subset R$ be irreducible. Then I is primary.

Proof. By passing to the quotient it is enough to prove this for the zero ideal, that is: if (0) is irreducible, then (0) is primary. Take $x,y\in R$ such that xy=0 and assume that $y\neq 0$. We therefore need to show that $x^n=0$ for some n>0. Consider the chain of annilhators

$$\operatorname{Ann}(x) \subset \operatorname{Ann}(x^2) \subset \cdots \subset \operatorname{Ann}(x^n) \subset \cdots$$

Since R is Noetherian this chain is stationary, so in particular there is some n>0 such that $\operatorname{Ann}(x^n)=\operatorname{Ann}(x^{n+1})$. Now we claim that $(x^n)\cap (y)=(0)$. Take $z\in (x^n)\cap (y)$, then zx=0 because $z\in (y)$ and xy=0. Also, $z=x^na$ for some $a\in R$, because $z\in (x^n)$. But then $zx=ax^{n+1}=0$ so $a\in \operatorname{Ann}(x^{n+1})$ and hence $a\in \operatorname{Ann}(x^n)$, so that z=0. Now $(y)\neq (0)$ because $y\neq 0$; since (0) is irreducible, this finally shows that $(x^n)=(0)$.

Note that the previous two propositions combined show that every ideal in a Noetherian ring can be written as a finite intersection of primary ideals. Before saying more, let us show that primary ideals are not in general irreducible:

Proposition 10. If I_1 , I_2 are p-primary ideals, then also $I_1 \cap I_2$ is p-primary.

Proof. Let $x,y\in R$ be such that $xy\in I_1\cap I_2$ and $x\notin I_1\cap I_2$. We can assume wlog that $x\notin I_1$. Since I_1 is primary we then have $y^n\in I_1$ for some n>0. Hence $y\in p=\sqrt{I_1}$. But since $\sqrt{I_2}=p$ as well, there must be some m>0 such that $y^m\in I_2$ as well, hence $y^{nm}\in I_1\cap I_2$.

Finally,
$$\sqrt{I_1 \cap I_2} = \sqrt{I_1} \cap \sqrt{I_2} = p$$
.

Using this last proposition, we can group all the primary ideals having the same radical in a primary decomposition together, thus obtaining:

Theorem 11. Let R be a Noetherian ring and let $I \subset R$ be an ideal. Then we can write

$$I = \bigcap_{i=1}^{n} I_i$$

such that each I_i is primary and $p_i = \sqrt{I_i}$ are all distinct prime ideals.

We can also asssume that for every i we have $\bigcap_{j\neq i}^n I_j \subsetneq I_i$, for otherwise taking out I_i would still yield a primary decomposition of I. If a primary decomposition satisfies this last condition then we call the primary decomposition minimal.

In general a minimal primary decomposition is never unique:

Example. Consider the ideal $I=(xy,y^2)\subset K[x,y]$. Then we can write $I=(y)\cap(x,y^2)=(y)\cap(x+y,y^2)$. The first equality is clear, so let us show the second. Clearly $xy\in(x+y,y^2)$ so $I\subset(y)\cap(x+y,y^2)$. Now, take $f=(x+y)h_1+y^2h_2\in(y)\cap(x+y,y^2)$. Then y divides h_1 necessarily so we can write $h_1=y\tilde{h}_1$ and $f=(x+y)y\tilde{h}_1+y^2h_2=(xy)\tilde{h}_1+y^2(h_2+\tilde{h}_1)$ which shows the other containment. The fact that $(x+y,y^2)$ is primary follows from Proposition 6, since $(x,y)^2\subset(x+y,y^2)\subset(x,y)$, where the former inclusion comes from the fact that $xy\in(x+y,y^2)$ and therefore $x^2\in(x+y,y^2)$ too. But clearly $(x,y^2)\neq(x+y,y^2)$ because $x+y\notin(x,y^2)$ for otherwise $y\in(x,y^2)$ too.

On the other hand, with some more work, one can make the following improvements towards a unicity statement:

- If $I = \bigcap_{i=1}^n I_i$ is a minimal prime decomposition as in Theorem 11, then the prime ideals $p_i = \sqrt{I_i}$ are, up to reordering, always the same (they are called the associated primes of I, see later);
- If $I = \bigcap_{i=1}^n I_i$ is a minimal prime decomposition, then the primary ideals I_i such that $p_i \subseteq p_i$ for every $j \neq 1$ are, up to reordering, always the same.

The definition of associated primes works in general for modules, and it is the following:

Definition 12. Let M be a R-module: a prime ideal $p \subset R$ is an associated prime of M if there is some $m \in M$ such that $p = \operatorname{Ann}(m)$. If $I \subset R$ is an ideal, then the associated primes of I are the associated primes of the module R/I.

For a proof of these statements see for instance Patakfalvi's notes or any book of commutative algebra, e.g., Atiyah-MacDonald's. Note in particular that the first uniqueness statement yield the following corollary, whose geometric counterpart is the (unique) decomposition of algebraic subsets into irreducible components:

Corollary 13. Any radical ideal in a Noetherian ring can be written uniquely as an intersection of prime ideals.