
Lecture 14

In this final lecture of the course we shall prove the Nullstellensatz and some facts
about primary decompositions of ideals on Noetherian rings.

1 Nullstellensatz
Let K be an algebraic closed field. For c1, · · · , cn ∈ K denote by mc1,··· ,cn ⊂
K[x1, · · · , xn] denote the ideal (x1 − c1, · · · , xn − cn).

Proposition 1 (Weak Nullstellensatz). Every maximal ideal of K[x1, · · · , xn] is of the
form mc1,··· ,cn for some ci ∈ K.

Proof. Clearly, every ideal of the form mc1,··· ,cn is maximal (this holds true in gen-
eral, even if K is not algebraically closed). Now, let m ⊂ K[x1, · · · , xn] be a
maximal ideal. Then K[x1, · · · , xn]/m is a field. Hence, we know from previous
lectures that K[x1, · · · , xn]/m must be a finite extension of K, hence it must be
isomorphic to K itself since K is algebraically closed. So the composition K →
K[x1, · · · , xn]

π−→ K[x1, · · · , xn]/m must be an isomorphism, and we can use it to
identify K with K[x1, · · · , xn]/m in a natural way. Let now ci := π(xi), so ci ∈ K
due to the identification from before. Note that xi − ci ∈ m since m = ker(π) and
π(xi − ci) = ci − ci = 0. This implies that mc1,··· ,cn ⊂ m and since the former is
maximal we conlcude that mc1,··· ,cn = m.

Note that the main ingredient needed to prove the weak Nullstellensatz is Noether
normalization (together with the fact that if R ⊂ S is an integral extension of domains,
then R is a field if and only if S is a field).

Let now I ⊂ K[x1, · · · , xn] be an ideal. Recall that V (I) ⊂ Kn denotes the
vanishing locus of I , that is, V (I) is the Zariski closed subset

V (I) = {(c1, · · · , cn) ∈ Kn : f(c1, · · · , cn) = 0 for every f ∈ I}.

Since K[x1, · · · , xn] is Noetherian we know that I is finitely generated, so we can
write I = (f1, · · · fk) for some fi ∈ K[x1, · · · , xn] and therefore

V (I) = {(c1, · · · , cn) ∈ Kn : fi(c1, · · · , cn) = 0 for i = 1, · · · , k}.

Given any subset Z ⊂ Kn one denotes by I(Z) ⊂ K[x1, · · · , xn] the ideal given by
{f ∈ K[x1, · · · , xn] : f(z) = 0 for every z ∈ Z}. Note that I(Z) is always a radical
ideal (why?).
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Lemma 2. For an ideal I ⊂ K[x1, · · · , xn], we have I = (1) if and only if V (I) = ∅.

Proof. Clearly V (1) = ∅. Now, assume that V (I) = ∅ and assume that I ̸= (1). Then
there is a maximal ideal mc1,··· ,cn containing I , which implies that (c1, · · · , cn) ∈
V (I), absurd.

Theorem 3 (Nullstellensatz). Let K be an algebraically closed field and let I ⊂
K[x1, · · · , xn] be an ideal. Then I(V (I)) =

√
I .

Proof. The inclusion
√
I ⊂ I(V (I)) is clear, so we only need to prove that I(V (I)) ⊂√

I. Take g ∈ I(V (I)). We want to show that there is some n > 0 such that gn ∈ I .
Equivalently, we want to show that ḡ ∈ R := K[x1, · · · , xn]/I is nilpotent, where as
usual ḡ denotes the image of g under the quotient map.

Note that for a commutative ring R and an element r ∈ R, we have that the local-
ization Rr is the zero ring if and only if r is nilpotent (check this). So, it is enough to
show that Rḡ = 0 in our case.

We know how to explicitly construct the locazitaion of a ring at one element:
Rḡ = R[xn+1]/(xn+1ḡ − 1). Using the correspondence theorem, if we write I =
(f1, · · · , fk), we also have

Rḡ = K[x1, · · · , xn, xn+1]/(f1, · · · , fk, xn+1g − 1).

So our aim is to show that J := (f1, · · · , fk, xn+1g − 1) = (1), i.e., that V (J) = ∅
due to the Lemma before.

So, assume that (c1, · · · , cn, cn+1) ∈ V (J). This implies in particular that (c1, · · · , cn) ∈
V (I) by construction. But then g(c1, · · · , cn) = 0 as well, because g ∈ I(V (I)). Fi-
nally, we have the contradiction

0 = cn+1g(c1, · · · , cn)− 1 = −1.

2 Primary decomposition
Let again K be an algebraically closed field and consider an ideal I ⊂ K[x1, · · · , xn].
We claimed that the associated Zariski closed subset (or algebraic variety) V (I) ⊂ Kn

can be decomposed into irreducible Zariski closed subsets. We recall that a topological
space V is irreducible if when we write V = V1 ∪ V2 with V1, V2 ⊂ V closed, then
necessarily V1 = V or V2 = V . In a previous lecture, we proved that V (I) is irre-
ducible if and only if I is a prime ideal. Using the Nullstellensatz, it also follows that
a Zariski closed V ⊂ Kn is irreducible if and only if I(V ) is prime.

Now, if V (I) = ∪Vi is a decomposition into irreducible components, then

I(V (I)) =
√
I =

⋂
i

I(Vi).

Hence, the existence of the decomposition into irreducible components translates to
algebra into: every radical ideal of K[x1, · · · , xn] can be written as an intersection of
prime ideals (this is, in fact, true in general for every Noetherian ring).
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The primary decomposition of ideals is a stronger statement which works for any
ideal (not necessarily radical) in any Noetherian ring.

Definition 4. Let R be a ring. An ideal I ⊂ R is primary if for every x, y ∈ R such
that xy ∈ I , if x /∈ I then yn ∈ I for some n > 0.

In other words: an ideal I ⊂ R is primary if every zero-divisor of R/I is nilpotent.

Proposition 5. If I ⊂ R is primary, then
√
I is prime, and is the smallest prime ideal

containing I .

Proof. Let x, y ∈ R be such that xy ∈
√
I and assume that x /∈

√
I . For some n > 0

we have xnyn ∈ I , and since x /∈
√
I we also have xn /∈ I . Since I is primary, there

is some m > 0 such that (yn)m ∈ I . But then y ∈
√
I , so

√
I is prime.

The fact that
√
I is the smallest prime containing I is obvious, since for any prime

ideal q such that I ⊂ q we have
√
I ⊂ q.

If I is primary and p =
√
I , we say that I is p-primary.

Example.

1. If an ideal I is such that
√
I is prime, then I is not necessarily primary. As an

example one can take the ideal I = (xy, y2) ⊂ K[x, y] for K any field. Since
(y)2 ⊂ I ⊂ (y) we have that

√
I = (y), which is prime. On the other hand, I is

not primary, because xy ∈ I , y /∈ I and xn /∈ I for any n > 0.

2. If p ⊂ R is a prime ideal, then pn is not necessarily p-primary. Consider R =
K[x, y, z]/(xy− z2), and denote by x̄, ȳ, z̄ the images of the variables in R. Let
I = (x̄, z̄) ⊂ R. Now R/I = K[x, y, z]/(xy − z2, x, z) = K[y], so I is prime.
We want to show that I2 is not primary. But I2 = (x̄2, z̄2, x̄z̄) = (x̄2, x̄ȳ, x̄z̄).
So x̄ȳ ∈ I2 but x̄ /∈ I2 and ȳn /∈ I2 for any n > 0, for otherwise ȳ ∈

√
I2 = I ,

which is impossible since R/I ∼= K[y].

3. If I is p-primary, then I is not necessarily a power of p. To check this, simply
consider I = (x, y2) ⊂ K[x, y]. The fact that I is (x, y)-primary will follow
from Proposition 6. But (x, y)2 ⊊ I ⊊ (x, y), and it is easy to verify that all the
inclusions are strict.

4. Finally, this last example shows that primary ideals are hard if not impossible
to classify. Consider the ideal Ia = (x2, y2, xy, ax + y) ⊂ K[x, y], where
a ∈ K. This is (x, y)-primary again due to Proposition 6, and we also have
(x, y)2 ⊂ Ia ⊂ (x, y). We now show that if a ̸= b then Ia ̸= Ib. In fact, if
αx + βy ∈ Ia for some α, β ∈ K then αx + βy = k · · · (ax + y) for some
k ∈ K necessarily. But then kβ and hence β ̸= 0 and α/β = a.

On the other hand, we have

Proposition 6. Let I ⊂ R be an ideal such that
√
I = m is a maximal ideal. Then I

is m-primary.
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Proof. We prove that every zero-divisor in R/I is nilpotent. The nilradical of R/I is
n =

√
I/I , which is also a maximal ideal, because its contraction under the quotient

map R → R/I is maximal. Since every prime ideal contains the nilradical this shows
that n is also the only prime ideal of R/I . But then every element of R/I \ n is a unit
for otherwise it would be contained in some maximal ideal. Finally, take a zero-divisor
x ∈ R/I . Then x cannot be a unit, hence x ∈ n, hence it is nilpotent.

All ideals now are considered to be proper ideals.

Definition 7. Let R be a ring.

• An ideal I ⊂ R is irreducible if I = I1 ∩ I2 then either I = I1 or I = I2.

• An ideal I is decomposable if we can write I =
⋂n

j=1 Ij where each Ij is
irreducible.

Note in particular that every irreducible ideal is decomposable. The next two propo-
sitions show two very interesting consequences of the Noetherianity assumption:

Proposition 8. In a Noetherian ring every ideal is decomposable.

Proof. Consider the set S of all ideals of R which are not decomposable, ordered by
inclusion. Take a maximal element I ∈ S, which exists because R is Noetherian.
Since I is not decomposable it cannot be irreducible and we can write I = I1 ∩ I2
for I ⊊ I1, I2 ⊊ R. But then I1, I2 /∈ S due to the maximality of I , so they are
both decomposable. But then both I1 and I2 can be written as a finite intersection of
irreducible ideals, and hence also I , which is a contradiction.

The connection between irreducibility and being primary also works in general
only for Noetherian rings:

Proposition 9. Let R be Noetherian and let I ⊂ R be irreducible. Then I is primary.

Proof. By passing to the quotient it is enough to prove this for the zero ideal, that is: if
(0) is irreducible, then (0) is primary. Take x, y ∈ R such that xy = 0 and assume that
y ̸= 0. We therefore need to show that xn = 0 for some n > 0. Consider the chain of
annilhators

Ann(x) ⊂ Ann(x2) ⊂ · · · ⊂ Ann(xn) ⊂ · · ·

Since R is Noetherian this chain is stationary, so in particular there is some n > 0
such that Ann(xn) = Ann(xn+1). Now we claim that (xn) ∩ (y) = (0). Take
z ∈ (xn) ∩ (y), then zx = 0 because z ∈ (y) and xy = 0. Also, z = xna for some
a ∈ R, because z ∈ (xn). But then zx = axn+1 = 0 so a ∈ Ann(xn+1) and hence
a ∈ Ann(xn), so that z = 0. Now (y) ̸= (0) because y ̸= 0; since (0) is irreducible,
this finally shows that (xn) = (0).

Note that the previous two propositions combined show that every ideal in a Noethe-
rian ring can be written as a finite intersection of primary ideals. Before saying more,
let us show that primary ideals are not in general irreducible:

Proposition 10. If I1, I2 are p-primary ideals, then also I1 ∩ I2 is p-primary.

4



Proof. Let x, y ∈ R be such that xy ∈ I1 ∩ I2 and x /∈ I1 ∩ I2. We can assume
wlog that x /∈ I1. Since I1 is primary we then have yn ∈ I1 for some n > 0. Hence
y ∈ p =

√
I1. But since

√
I2 = p as well, there must be some m > 0 such that

ym ∈ I2 as well, hence ynm ∈ I1 ∩ I2.
Finally,

√
I1 ∩ I2 =

√
I1 ∩

√
I2 = p.

Using this last proposition, we can group all the primary ideals having the same
radical in a primary decomposition together, thus obtaining:

Theorem 11. Let R be a Noetherian ring and let I ⊂ R be an ideal. Then we can
write

I =

n⋂
i=1

Ii

such that each Ii is primary and pi =
√
Ii are all distinct prime ideals.

We can also asssume that for every i we have
⋂n

j ̸=i Ij ⊊ Ii, for otherwise taking
out Ii would still yield a primary decomposition of I . If a primary decomposition
satisfies this last condition then we call the primary decomposition minimal.

In general a minimal primary decomposition is never unique:
Example. Consider the ideal I = (xy, y2) ⊂ K[x, y]. Then we can write I = (y) ∩
(x, y2) = (y) ∩ (x + y, y2). The first equality is clear, so let us show the second.
Clearly xy ∈ (x+ y, y2) so I ⊂ (y)∩ (x+ y, y2). Now, take f = (x+ y)h1+ y2h2 ∈
(y)∩(x+y, y2). Then y divides h1 necessarily so we can write h1 = yh̃1 and f = (x+
y)yh̃1+y2h2 = (xy)h̃1+y2(h2+h̃1) which shows the other containment. The fact that
(x+y, y2) is primary follows from Proposition 6, since (x, y)2 ⊂ (x+y, y2) ⊂ (x, y),
where the former inclusion comes from the fact that xy ∈ (x + y, y2) and therefore
x2 ∈ (x + y, y2) too. But clearly (x, y2) ̸= (x + y, y2) because x + y /∈ (x, y2) for
otherwise y ∈ (x, y2) too.

On the other hand, with some more work, one can make the following improve-
ments towards a unicity statement:

• If I =
⋂n

i=1 Ii is a minimal prime decomposition as in Theorem 11, then the
prime ideals pi =

√
Ii are, up to reordering, always the same (they are called the

associated primes of I , see later);

• If I =
⋂n

i=1 Ii is a minimal prime decomposition, then the primary ideals Ii
such that pj ⊊ pi for every j ̸= 1 are, up to reordering, always the same.

The definition of associated primes works in general for modules, and it is the follow-
ing:

Definition 12. Let M be a R-module: a prime ideal p ⊂ R is an associated prime of
M if there is some m ∈ M such that p = Ann(m). If I ⊂ R is an ideal, then the
associated primes of I are the associated primes of the module R/I .

For a proof of these statements see for instance Patakfalvi’s notes or any book
of commutative algebra, e.g., Atiyah-MacDonald’s. Note in particular that the first
uniqueness statement yield the following corollary, whose geometric counterpart is the
(unique) decomposition of algebraic subsets into irreducible components:
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Corollary 13. Any radical ideal in a Noetherian ring can be written uniquely as an
intersection of prime ideals.
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