Lecture 13

Before starting this lecture, I would like to give some geometric intuition behind
the localization at prime ideals. Let K again be an algebraically closed field, and let

p C K[z1,--+,2,] be a prime ideal. Consider V(p) C K™ the irreducible algebraic
variety associated with p.
Recall that we can interpret elements of ' = Frac(K|z1, -+ ,%,]) as meromor-

phic (= rational) functions on K™. That is, for f € F' there is a Zariski open subset
U C K™ such that f is well defined over U and yields a morphism f: U — K. In fact,
using, for example, that K[z1,-- - , 2, is a UFD, one can easily verify that there is a
maximal Zariski open U over which f is defined: this is called the domain of definition
of f.

Since K[x1,--- ,x,] is a domain, we can see all of its localizations as a subring
of F in a natural way. Then, one checks that the localization K[z, - - , 2,], consists
precisely of those rational funtions f € F whose domain of definition U satisfies
U NV (p) #. This means that the restriction of f to V(p) is well defined on a Zariski
open of V(p): in particular, it can still have poles at some points of V' (p). Now, the
ideal p® C Klz1,--- ,xy]p is maximal, as we know from the previous lecture, and
this corresponds to all the functions that are constantly zero on V' (p). The fact that
the ideal is maximal means that K[z, - ,2,],/p® is a field, which is precisely the
fraction field of K[z, -+ ,z,]/p (i-e., the field of rational functions on V' (p)).

1 Ideals, integral extensions and localization

In this section we shall prove many propositions regarding the interplay between inte-
gral extensions, localizations, and behavior of ideals.

Proposition 1. Let R C S be an integral ring extension, J C S an ideal. Then
R/J¢ — S/J is injective and integral.

Proposition 2. The injectivity is a completely general phenomena: for any ring mor-
phism R — S and any ideal J C S, the induced map R/J¢ — S/ J is injective.

The integrality is also easy to prove: pick any [s] € S/J. Since s is integral over R
it satisfies a monic equation s™ +1,_18" " +---4+r15+19 = 0 forr; € R. But then
looking at this equation in S/J yields [s]" + [r,_1][s]" 1 + -+ + [r1][s] + [ro] = 0,
which proves the statement.

Proposition 3. Let R C S be an integral ring extension, and let ¢ C S be a prime
ideal. Then q is maximal if and only if ¢ N R = ¢¢ is maximal.



Proof. We know that ¢¢ is prime. Hence, R/q° C S/q is an extension of domains. But
we have proved that R/q° is a field if and only if S/q is a field. O

Proposition 4. Let R C S be an integral ring extension. Let T' C R be a multiplica-
tively closed subset. Then TR — T8 is injective, and is integral as well.

Proof. To show that TR — T1S is injective, assume that r/t € T~! R is mapped
to 0. This means that there is w € T such that ru = 0in S. Since R C S is injective
and T' C R, this means that ru = 0 in R too, hence that r/t = 0.

To prove that the extension is integral, pick s/t € T~1S. Then s is integral over R
and we have an equation

"ty 8" s+ =0
divide this by ¢" and obtain
(s/8)" + (ra—1 /t)(s/t)" " 4 + (1 /t" 1) (s/t) + (0 /t") = 0
which shows that s/t is integral over T~ R. O

We now prove one of the most fundamental results in this area of commutative
algebra:

Theorem 5 (Going-up). Let R C S be integral ring extension.
1. Forany prime ideal p C R there is a prime ideal ¢ C S such that ¢° = qNR = p.

2. For every p1 € pa C R prime ideals and every qu C S prime ideal such that
q1 N R = p1, we can choose a prime ideal qs such that g1 C q2 and ga N R = po.

3. If 1 € g2 C S are prime ideals, then g1 N R # q2 N R.
Proof. We make use of Theorem 6 of the previous lecture.

* We denote by R, and S, the localization of both rings at R \ p. So we get an
integral extension R, C S, by one of the previous propositions. Now, R,, is a
local ring, with pR,, as maximal ideal.

Pick m C S, any maximal ideal. Then m N R,, is maximal as well, because
R, C S, is integral; hence, m N R, = pR, necessarily. Consider now the
following commutative diagram, where the ‘iota’ maps denote the localizations:

R—— S

on | s

Ry —— S,
due to commutativity, we have
p= Lgl(pRp) = Lgl(Rp Nm)=RN Lgl(m).

Hence, we can put ¢ = 15" (m).



* Let us localize both R and S at T = R \ pa. We get an integral extension
R,, C S,,. Now, since p1 C po we have T'N p; = 0, hence p1 R, is a proper
prime ideal of R,,. Similarly, ¢s NT = ¢ N RNT = py NT = (), hence
q1Sp, is a proper prime ideal of S,,. Now we simply pick a maximal ideal
¢1Sp, C m C Sp, and proceed as before.

* Assume that this is false, so that p = ¢; N R = ¢ N R. Again, localize both R
and S atT = R\ p. Now, since g1 N T = g2 N T = ) we have that ¢1 S, C ¢25,
by point 4 of Theorem 6 of the previous lecture. Look again at the diagram

R—— S
LRl le
R, —— 5,
We have
p=q@ NR= Lgl(qls,,) NR= Lgl(qlSp NRy)

again from point 4 of Theorem 6 of the previous lecture, we deduce that pRR,, =
¢1Sp N R,,. The same holds for ¢o, i.e., pR, = 25, N R,. But pR,, is maximal,
and since S, C R, is integral, this implies that both ¢2.5;, and ¢; S, are maximal.
Hence ¢1.5, = ¢2.5;, which is a contradiction.

O

Corollary 6. Let R C S be an integral ring extension. Then dim(R) = dim(S).
Proof. Recall that dim(R) = sup{n: Ipg C p1 € -+ p, C R chain of prime ideals}.

=

e dim(S) < dim(R): pick a chain of prime ideals g0 € ¢1 € -+ gn C S. Then

=

pi = ¢; N R forms a chain of prime ideals pg C p; C - --p, by point 3 of the
Going up theorem.

e dim(S) > dim(R): pick a chain of prime ideals py C p1 € ---p, C S. By
point 1 of the going up theorem, we can find gg C S such that g N R = py.
By point (2), we can find ¢; such that gg C g; with gt N R = py, withgo € @1
necessarily. Continuing like this, we obtain a chain of length n of prime ideals
of S.

O
Theorem 7. Let F be any field. Then diim(F[xq,- - ,z,]) = n.

Proof. We prove this by induction on n. If n = 0, the result is trivially true. Now, we
know that dim(F[x1,- - ,x,]) > n since

(O) - (xl) - (mlax2) G- G (wlv"' 7xn)
is a chain of prime ideals of length n. Take now any chain of prime ideals

Po &SP &Cp2 S D

we want to show that » < n. We can make this chain longer if we can:



* If py # (0) then we can add (0) at the beginning: so we can assume py = (0)
and that the chain looks like (0) € py - - -;

* If py is not principal, take f € p; \ 0. Since F[x1, -, ;] is a UFD, we can
pick a prime factor s of f: then (s) is a prime ideal and (s) C p;.

Due to these considerations, we can assume that our chain looks like

0) S (s) Sp2--- S pr,y

where s € Flxq,- - ,x,] is irreducible. Now, up to reordering the coordinates, we can
assume that s € Flzy, -+ ,zp_1]

Let R = Flxy, -+ ,x,]/(s) and let Z; be the image of x; in R. We claim that
Z1, -+ ,Zp—1 are algebraically independent. Suppose not, then there is a polynomial
P € Flxy,-++ ,@n—1] such that P(Zy, - ,Z,—1) = 0. This means that P € (s),
which is impossible unless P = 0.

So, we have an inclusion F'[Z1,- - ,Z,—1] C R where the former is a polynomial

algebra. We do not know that this ring extension is integral, though, so we cannot
use the induction step and deduce that R has dimension n — 1. On the other hand, we
know that the induced extension on fraction fields Frac(F[Z1, - - , Z,—1]) C Frac(R),
because Frac(R) is generated by Z,,. Therefore we have tr.deg.(Frac(R)) = n — 1.
Also, we can use Noether normalization and find another polynomial algebra S =
Flty,--- ,tq] such that S C R is a finite ring extension. Again, since Frac(S) C
Frac(R) is an algebraic field extension, this shows that they have the same transcen-
dental degree, i.e., thatd =n — 1.

But by induction dim(S) = n — 1, and since S C R is integral, we also have that
dim(R) =n — 1.

To conclude the argument, we now note that the chain

0)C(s) Sp2---Cor

yields a chain on R of the form

(0) S p2/(s)--- S pr/(s),
and hence r — 1 < n — 1, which proves the result. O
We are finally able to prove

Theorem 8. Letr F be a field and let R = Flx1,--- ,2y]/I be an integral domain.
Then dim(R) = tr.deg. p(Frac(R)).

Proof. By Noether normalization we can find a polynomial algebra S = F'[t1,-- - , 4]
and an integral extension S C R. Now dim(R) = dim(S) = d where the last equality
follows from the previous proposition and tr.deg. - (Frac(R)) = tr.deg. z(Frac(S)) =
d. O
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