
Lecture 13

Before starting this lecture, I would like to give some geometric intuition behind
the localization at prime ideals. Let K again be an algebraically closed field, and let
p ⊂ K[x1, · · · , xn] be a prime ideal. Consider V (p) ⊂ Kn the irreducible algebraic
variety associated with p.

Recall that we can interpret elements of F = Frac(K[x1, · · · , xn]) as meromor-
phic (= rational) functions on Kn. That is, for f ∈ F there is a Zariski open subset
U ⊂ Kn such that f is well defined over U and yields a morphism f : U → K. In fact,
using, for example, that K[x1, · · · , xn] is a UFD, one can easily verify that there is a
maximal Zariski open U over which f is defined: this is called the domain of definition
of f .

Since K[x1, · · · , xn] is a domain, we can see all of its localizations as a subring
of F in a natural way. Then, one checks that the localization K[x1, · · · , xn]p consists
precisely of those rational funtions f ∈ F whose domain of definition U satisfies
U ∩ V (p) ̸=. This means that the restriction of f to V (p) is well defined on a Zariski
open of V (p): in particular, it can still have poles at some points of V (p). Now, the
ideal pe ⊂ K[x1, · · · , xn]p is maximal, as we know from the previous lecture, and
this corresponds to all the functions that are constantly zero on V (p). The fact that
the ideal is maximal means that K[x1, · · · , xn]p/p

e is a field, which is precisely the
fraction field of K[x1, · · · , xn]/p (i.e., the field of rational functions on V (p)).

1 Ideals, integral extensions and localization
In this section we shall prove many propositions regarding the interplay between inte-
gral extensions, localizations, and behavior of ideals.

Proposition 1. Let R ⊂ S be an integral ring extension, J ⊂ S an ideal. Then
R/Jc → S/J is injective and integral.

Proposition 2. The injectivity is a completely general phenomena: for any ring mor-
phism R → S and any ideal J ⊂ S, the induced map R/Jc → S/J is injective.

The integrality is also easy to prove: pick any [s] ∈ S/J . Since s is integral over R
it satisfies a monic equation sn + rn−1s

n−1 + · · ·+ r1s+ r0 = 0 for ri ∈ R. But then
looking at this equation in S/J yields [s]n + [rn−1][s]

n−1 + · · · + [r1][s] + [r0] = 0,
which proves the statement.

Proposition 3. Let R ⊂ S be an integral ring extension, and let q ⊂ S be a prime
ideal. Then q is maximal if and only if q ∩R = qc is maximal.
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Proof. We know that qc is prime. Hence, R/qc ⊂ S/q is an extension of domains. But
we have proved that R/qc is a field if and only if S/q is a field.

Proposition 4. Let R ⊂ S be an integral ring extension. Let T ⊂ R be a multiplica-
tively closed subset. Then T−1R → T−1S is injective, and is integral as well.

Proof. To show that T−1R → T−1S is injective, assume that r/t ∈ T−1R is mapped
to 0. This means that there is u ∈ T such that ru = 0 in S. Since R ⊂ S is injective
and T ⊂ R, this means that ru = 0 in R too, hence that r/t = 0.

To prove that the extension is integral, pick s/t ∈ T−1S. Then s is integral over R
and we have an equation

sn + rn−1s
n−1 + · · ·+ r1s+ r0 = 0

divide this by tn and obtain

(s/t)n + (rn−1/t)(s/t)
n−1 + · · ·+ (r1/t

n−1)(s/t) + (r0/t
n) = 0

which shows that s/t is integral over T−1R.

We now prove one of the most fundamental results in this area of commutative
algebra:

Theorem 5 (Going-up). Let R ⊂ S be integral ring extension.

1. For any prime ideal p ⊂ R there is a prime ideal q ⊂ S such that qc = q∩R = p.

2. For every p1 ⊊ p2 ⊂ R prime ideals and every q1 ⊂ S prime ideal such that
q1∩R = p1, we can choose a prime ideal q2 such that q1 ⊂ q2 and q2∩R = p2.

3. If q1 ⊊ q2 ⊂ S are prime ideals, then q1 ∩R ̸= q2 ∩R.

Proof. We make use of Theorem 6 of the previous lecture.

• We denote by Rp and Sp the localization of both rings at R \ p. So we get an
integral extension Rp ⊂ Sp by one of the previous propositions. Now, Rp is a
local ring, with pRp as maximal ideal.

Pick m ⊂ Sp any maximal ideal. Then m ∩ Rp is maximal as well, because
Rp ⊂ Sp is integral; hence, m ∩ Rp = pRp necessarily. Consider now the
following commutative diagram, where the ‘iota’ maps denote the localizations:

R S

Rp Sp

ιR ιS

due to commutativity, we have

p = ι−1
R (pRp) = ι−1

R (Rp ∩m) = R ∩ ι−1
S (m).

Hence, we can put q = ι−1
S (m).
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• Let us localize both R and S at T = R \ p2. We get an integral extension
Rp2 ⊂ Sp2 . Now, since p1 ⊂ p2 we have T ∩ p1 = ∅, hence p1Rp2 is a proper
prime ideal of Rp2

. Similarly, q1 ∩ T = q1 ∩ R ∩ T = p1 ∩ T = ∅, hence
q1Sp2

is a proper prime ideal of Sp1
. Now we simply pick a maximal ideal

q1Sp2
⊂ m ⊂ Sp2

and proceed as before.

• Assume that this is false, so that p = q1 ∩ R = q2 ∩ R. Again, localize both R
and S at T = R \ p. Now, since q1 ∩T = q2 ∩T = ∅ we have that q1Sp ⊊ q2Sp

by point 4 of Theorem 6 of the previous lecture. Look again at the diagram

R S

Rp Sp

ιR ιS

We have
p = q1 ∩R = ι−1

S (q1Sp) ∩R = ι−1
R (q1Sp ∩Rp)

again from point 4 of Theorem 6 of the previous lecture, we deduce that pRp =
q1Sp ∩Rp. The same holds for q2, i.e., pRp = q2Sp ∩Rp. But pRp is maximal,
and since Sp ⊂ Rp is integral, this implies that both q2Sp and q1Sp are maximal.
Hence q1Sp = q2Sp, which is a contradiction.

Corollary 6. Let R ⊂ S be an integral ring extension. Then dim(R) = dim(S).

Proof. Recall that dim(R) = sup{n : ∃p0 ⊊ p1 ⊊ · · · pn ⊂ R chain of prime ideals}.

• dim(S) ≤ dim(R): pick a chain of prime ideals q0 ⊊ q1 ⊊ · · · qn ⊂ S. Then
pi = qi ∩ R forms a chain of prime ideals p0 ⊊ p1 ⊊ · · · pn by point 3 of the
Going up theorem.

• dim(S) ≥ dim(R): pick a chain of prime ideals p0 ⊊ p1 ⊊ · · · pn ⊂ S. By
point 1 of the going up theorem, we can find q0 ⊂ S such that q0 ∩ R = p0.
By point (2), we can find q1 such that q0 ⊂ q1 with q1 ∩ R = p1, with q0 ⊊ q1
necessarily. Continuing like this, we obtain a chain of length n of prime ideals
of S.

Theorem 7. Let F be any field. Then dim(F [x1, · · · , xn]) = n.

Proof. We prove this by induction on n. If n = 0, the result is trivially true. Now, we
know that dim(F [x1, · · · , xn]) ≥ n since

(0) ⊊ (x1) ⊊ (x1, x2) ⊊ · · · ⊊ (x1, · · · , xn)

is a chain of prime ideals of length n. Take now any chain of prime ideals

p0 ⊊ p1 ⊊ p2 · · · ⊊ pr;

we want to show that r ≤ n. We can make this chain longer if we can:
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• If p0 ̸= (0) then we can add (0) at the beginning: so we can assume p0 = (0)
and that the chain looks like (0) ⊊ p1 · · · ;

• If p1 is not principal, take f ∈ p1 \ 0. Since F [x1, · · · , xn] is a UFD, we can
pick a prime factor s of f : then (s) is a prime ideal and (s) ⊂ p1.

Due to these considerations, we can assume that our chain looks like

(0) ⊊ (s) ⊊ p2 · · · ⊊ pr,

where s ∈ F [x1, · · · , xn] is irreducible. Now, up to reordering the coordinates, we can
assume that s /∈ F [x1, · · · , xn−1].

Let R = F [x1, · · · , xn]/(s) and let x̄i be the image of xi in R. We claim that
x̄1, · · · , x̄n−1 are algebraically independent. Suppose not, then there is a polynomial
P ∈ F [x1, · · · , xn−1] such that P (x̄1, · · · , x̄n−1) = 0. This means that P ∈ (s),
which is impossible unless P = 0.

So, we have an inclusion F [x̄1, · · · , x̄n−1] ⊂ R where the former is a polynomial
algebra. We do not know that this ring extension is integral, though, so we cannot
use the induction step and deduce that R has dimension n− 1. On the other hand, we
know that the induced extension on fraction fields Frac(F [x̄1, · · · , x̄n−1]) ⊂ Frac(R),
because Frac(R) is generated by x̄n. Therefore we have tr.deg.(Frac(R)) = n − 1.
Also, we can use Noether normalization and find another polynomial algebra S =
F [t1, · · · , td] such that S ⊂ R is a finite ring extension. Again, since Frac(S) ⊂
Frac(R) is an algebraic field extension, this shows that they have the same transcen-
dental degree, i.e., that d = n− 1.

But by induction dim(S) = n − 1, and since S ⊂ R is integral, we also have that
dim(R) = n− 1.

To conclude the argument, we now note that the chain

(0) ⊊ (s) ⊊ p2 · · · ⊊ pr

yields a chain on R of the form

(0) ⊊ p2/(s) · · · ⊊ pr/(s),

and hence r − 1 ≤ n− 1, which proves the result.

We are finally able to prove

Theorem 8. Let F be a field and let R = F [x1, · · · , xn]/I be an integral domain.
Then dim(R) = tr.deg.F (Frac(R)).

Proof. By Noether normalization we can find a polynomial algebra S = F [t1, · · · , td]
and an integral extension S ⊂ R. Now dim(R) = dim(S) = d where the last equality
follows from the previous proposition and tr.deg.F (Frac(R)) = tr.deg.F (Frac(S)) =
d.
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