Lecture 12

In this lecture we introduce localization of rings (and modules), which is one of the
most important tool in commutative algebra and algebraic geometry. One can motivate
it in a variety ways.

1. Constructing Zariski open subsets: let K be an algebraically closed field, and
consider K™ = m — Spec(K|x1,- - ,x,] endowed with the Zariski topology.
We know that we can interpret the elements of R = Kz, - , ] as regular
functions on K™. Now, an element of F' = Frac(R) can be interpreted as a mero-
morphic (or rational) function on K: take f/g € F andlet V(g) C K™ the van-
ishing locus of g. Then V(g) C K™ is a Zariski closed subset by definition, and
its complement D(g) = K™\ V(g) is a Zariski open. Note also that V'(g) has di-
mensionn—1 (if g ¢ K). This means that D(g) = K™\V (g) is big: for instance
if n = 1 then D(g) corresponds to the whole K minus finitely many points, and
in general, for any g1,g2 € R we have D(g1) N D(g2) = D(g192) # (0. The
element f/g can now be considered as a regular function D(g) — K send-
ing x — f(z)/g(x). The upshot of this is that we can interpret the elements
of F' as functions which are regular on some Zariski open subset of K™. The
(vague) question now is: is there a ring S whose m — Spec gives precisely
D(g)? Using the philosophy that algebraic varieties should correpond to their
ring of functions, to find such ring, we should understand regular functions
D(g) — K. Now an element of R gives by restriction a regular function on
D(g), so we must get an inclusion R C S. Moreover, by what we said before,
any meromorphic (or rational) function on D(g) should give a rational function
on K™ and viceversa, which tells us that R C S C F. In fact, the answer is
S = {f/g": f € Randk > 0}. Note that this is a subsring of F', which we
obtained from R by forcing ¢g to become invertible. This is what localization
does: it forces certain elements of the ring to become invertible.

2. Another fact that will become apparent sooner or later is that a ring is easier to
study the fewer ideals it has. For instance, fields are the easiest rings, because
only (0) is a prime ideal. Similarly, local rings are easier study than general
rings because they have a unique maximal ideal. Localization allows us to obtain
local rings out of rings. The geometric interpretation of this is that we focus our
attention to what happens around a point. As an example, consider the point
P = (0,0) € K2. Now, we consider the subring S C F = Frac(K[z1,z2])
given by rational functions which are well-defined at (0, 0), thatis, S = {f/g €
F': ¢(0,0) # 0}. This is easily seen to be a ring, and we shall check later that



this is also a local ring, where the unique maximal ideal is given precisely by
(21, x2), i.e., the maximal ideal of K[z, 23] corresponding to P.

Another example is given by Z,,) = {a/b € Q: (b, p) = 1}. This is also a local
ring whose only maximal ideal is given by (p).

Definition 1. Let R be aring. A multiplicatively closed subset 7" C R is a subset such
that 1 € T and for every t,s € T we have st € T.

Example. 1. If t € R then we can take 7' = {1,¢,t%,#3,--- }.

2. If p C Ris a prime ideal, then R \ p is a multiplicatively closed subset (in fact,
and ideal I C R is prime if and only if R \ I is a multiplicatively closed subset).

Those two examples will correspond respectively to the two motivational examples
above.

Given a ring R and a multiplicatively closed subset 7' C R, localization allows
us to build a new ring 7' R in which all the elements of T' become invertible, in a
universal way:

Theorem 2. Let R and T be as above. There exists a ring T~ R together with a map
t: R — T~ R which satisfies the following unviersal property:

s foranyt € T the image 1(t) is invertible in T~ R;

* If f: R — Sis aring map such that for any t € T' we have that f (t) is invertible
in S, then there is a unique map f: T~'R — S and a factorization

R —— T-'R

N

The ring T~ R is called the localization of R at T.

Proof. Let us show the proof in the easy case when T = {1,t,t2,-.-} fort € R.
In this case, we can construct the ring 7! R quite easily: we simply put TR =
Rx]/(xt — 1). Note what we are doing: we are first constructing the polynomial ring
RJ[z], and then we are forcing the relation 2t = 1: in this way, the image of = in
R[z]/(xt—1) becomes an inverse of t. We show now that R — R[z]/(at—1) satisfies
the universal property: pick any ring map f: R — S such that f(¢) is invertible,
i.e., there is (a necessarily unique) s € S such that sf(t) = 1. Note that then also
f(&™) = f(t)™ is invertible for every n > 0, with inverse s™. Now consider the map
f: R[z] — S whichsends P(z) = ro+riz+-- - rpz™ to f(ro)+f(r1)s+--- f(rn)s™.
We only need to check that (zt—1) C ker(f). But we compute f(tz—1) = f(t)s—1 =
0.

In fact, we can replicate this construction for any multiplicatively closed subset
T C R, but we need to use polynomial rings in infinitely many variables. The argument
is explained in Patakfalvi’s notes.



The problem with this proof is that, for instance, it is hard to characterise the kernel
of the natural map R — R[z]/(at — 1). The classical proof of the theorem uses
calculus of fractions, and it is more intuitive although one has more details to check.
We would like to create a new ring whose elements are of the form r /¢ for r € R and
t € T. One begins by considering the set {(r,t): r € R, € T}. One then defines
addition and multiplication by emulating the usual formulas for fractions: (ry,¢1) +
(T1, tQ) = (7“1t2 +7raty, t1t2) and (Tl, tl)(’l"g, t2> = (7"1T2, t1t2>. Next, one needs to put
an equivalence relation on this set to take care of pairs which yield the same fraction. As
a first attempt, one can say that two pairs (71, t1) and (rq, t2) are equivalence if 1ty —
rot1 = 0. This indeed yield an equivalence relation if R is a domain, but in general it
may fail to be transitive, due to the presence of zero divisors in the multiplicative set
T.

The solution is the following: we say that (r1,¢1) is equivalent to (ro, t2) if there
is some u € T such that u(rite — rot1) = 0. Intuitively, since we are forcing all the
elements of 7" to become invertible, if u(rity — rot;) = 0 then also (r1te — rotq) must
be zero in the localization 7! R. One checks that this gives an equivalence relation,
and that the operations defined above respect this equivalence relation (we leave all
these easy verifications to the student). So, by taking equivalence classes, we obtain
the ring T-1 R. We denote the equivalence class of (r,¢) in TR by r/t. The map
t: R — T71Ris then given by r + /1.

To check the universal property, we first show that for any ¢ € T we have that
t(t) is invertible. We check: «(t) = ¢/1 and t/1 -1/t = t/t = 1/1. Now, con-
sider any map f: R — S is such that f(t) is invertible for every ¢t € T, then we
define amap f: T-'R — S by sending r/t to f(r)f(t)~!. This well-defined, be-
cause if r1/t; = 7r9/to then there is u € T such that u(rite — raty) = 0, so
F@)(f(r1)f(t2) — f(r2) f(t1)) = 0in S. But since f(u) is invertible in .S, this means
that f(r) f(t2) — f(r2) f(f1) = 0 and hence that f(r1) f(t1) " = f(r2)f(t2) L. The

fact that f is a map of ring is also easy to check. For instance we have f(rq/t1 +

ra/t2) = f((rita +rat1)/(tit2)) = (f(r1)f(t2) + f(r2) f(0)) (f(t2) T f(t2) 1) =
f(r) f(t1) 1+ f(r2) f(t2)~L. Multiplication can be checked in an analogous way. []

Using the last description, it is easy to determine the kernel of 1: R — T~ 'R:

Proposition 3. We have

ker. = U Anng(u).
ueT

Here, Anng(u) = {r € R: ru = 0} is the annihilator of w in R. This is always
an ideal. Note also that the union of ideals is in general never an ideal. On the other
hand, it can be easily checked that for any multiplicatively closed subset we have that
Uuer Anng(u) is always an ideal.

Proof. To determine the kernel we simply have to determine for which elements » € R
we have /1 = 0/1 in T~ R. This is equivalent that there is « € T such that ur = 0,
sor € Anng(u) for some u € T O

In particular, we have



1. If 0 € T then T~ R = 0, the zero ring (where 1 = 0).

2. If T contains no zero divisors, then ¢ is injective. This happens automatically if
R is a domain.

3. If R is a domain, we also have a natural injection 7~!R C Frac(R) whenever
0 ¢ T. In fact, the natural injection R — Frac(R) sends every element of 7" to an
invertible element of Frac(R). So by the universal property of the localization
we obtain a map T~ 'R — Frac(R). This is clearly injective. From this it
follows that if R is a domain then also 7! R is a domain, and it can be identified
with the subring {r/t € Frac(R): r € Rand t € T}.

Finally, we can also localize R-modules. The construction is basically the same.

Proposition 4. Let M be a R-module and T' C R be a multiplicatively closed subset.
Then, there is a R-module T~ M and a morphism of R-modules 1: M — T~'M such
that:

1. for any t € T, the multiplication by t map t: T~'M — T—1M is an isomor-
phism;

2. If o: M — N is a morphism of R-modules such that for any t € T, the multi-
plication by t map t: N — N is an isomorphism, there is a unique morphism
¢: T~YM — N such that the following commutes:

M —— T 'M

X}V‘g

One constructs 7~ M using again calculus of fractions. That is, T~ M is the set
of equivalence classes of pairs (m,t) for m € M and t € T, where two such pairs
(ma,t1) and (me, t2) are equivalent if there is u € T such that u(mita — mats) = 0.
Addition is defined in the usual manner, and the R-module structure R x T-'M —
T~'M is given by (r,m/t) — rm/t.

Two things are important to know: the first is that 7= M is naturally a 7! R-
module. The second, from which the first also follows, and which is part of the exer-
cises, is that there is a natural isomorphism T-'M>~M®rT 'R.

Definition 5. This is just notation: if R is aring and ¢ € R, then we denote by R; the
localization of R at T = {1,¢,t2,---}. If p C R is a prime ideal, then one denotes by
R, the localization of RatT = R\ p.

0.1 Behaviour of ideals under localization

Now we have come to arguably the most important result concerning localization. Con-
sider f: R — S any ring morphism. If J C S is an ideal, then J¢ := f~(J) C Ris
also an ideal. This is called the contraction of J along f.



If I C R is an ideal, then f(I) C S is not in general an ideal. On the other
hand, we define the extension of I along f as I¢ C S the ideal generated by f(I), i.e.,
I*=f(I)-S.SoifI = (rq, -+ ,rp) then I¢ = (f(r1), -, f(rn)).

We already know that contraction respects prime ideals. This was part of the ex-
ercises. On the other hand, extension does not preserve primality. Also the following
containments are obvious: (J¢)¢ C Jand I C (I¢)°.

Theorem 6. Let T' C R be a multiplicatively closed subset, and let 1: R — T~ R be
the localization map.

1. Forany ideal J C T~ 'R we have (J¢)¢ = J;

2. ForI C Rwehave (I°)° = U,cr(I:t) = Uep{r € Rirt € I},
3. For I C Rwe have that I¢ = (1) if and only if IN'T # ;
4

. For any p C R prime ideal such that p N'T = () we have: p® is a prime ideal of
T~ 'R and (p°)¢ = p.

Proof. 1. we know already that (J¢)¢ C J. Now, take any r/t € J: then also
(t/1)(r/t) =r/1 € J. But then r € J¢ and therefore r/t € (J¢)°.

2. I¢is the ideal of T~ R generated by +(I). So, a random element of ¢ has the
form Zﬁnite %: . ’T’“ where 1, € R, t;, € T and i, € 1. But a simple computation
with fractions then shows that every element of 7€ has the form i /¢ for i € I and
t € T. Now, an element r € R belongs to (I°)° if and only if there is i/t € I°
such that r/1 = i/t. That is, if and only if there is i € I, u,t € T such that
u(rt — i) = 0. If this last equality is true, then r(ut) € I, sor € (I: ut).
Similarly, if r € (I: t) for some t € T, thenrt = ¢ € I and therefore r/1 = i/t.

3. We have that /¢ = (1) if and only ¢/t = 1/1 for some i € I, ¢ € T. This means
that there is u € T such that (¢ — ¢t)u = 0. But then ¢u = tu which shows that
I¢ = (1)ifandonl I NT # ().

4. Let us first show that p® is a prime ideal if p N T = (). Assume that there are
r1/t1,m2/ta € TR such that 77y /tity € p°. But then also (r1/1)(r2/1) €
p€, which means that there are p € p, u,t € T such that u(trire —p) = 0in R
which implies that (ut)(r172) € p. Now ut ¢ p by assumption, so necessarily
riro € p. So either r1 or o is in p, which shows that either 71 /t1 or ro/to is in
P
To show that (p®)¢ = p we use the formula from point 2. It is enought to prove
that for any ¢t € T we have (p: t) = p. But (p: t) = {r € R: rt € p} by
definition, and since ¢ ¢ p for every ¢ € T, we conclude.

O

In particular, we have



Corollary 7. Contraction and extension gives a one-to-one correspondence
{prime ideals of T"*R} «— {prime ideals p of R such that p\'T = (}.

In particular, the map Spec(T 1 R) — Spec(R) is injective, and its image corresponds
to all p € Spec(R) such thatpN'T = (.

Proof. 1f p is a prime ideal of T~! R, then p€ is a prime ideal of R. Since (p¢)¢ = p by
point 1, we have that p© N T = () necessarily by point 3.

If p C R is a prime ideal such that p N T = () then p€ is prime by point 4, and
(p®)¢ = p again by point 4. O

Corollary 8. Let p C R be a prime ideal, and let T = R\ p. Then T~ R is a local
ring, with maximal ideal given by p°.

Proof. Clearly pN'T = () so p° is a prime ideal of 7~'R. But now any element of
TR\ p° is invertible, so p°® has to be maximal as well. ]

This shows that in general localization does not respect maximal ideals. On the
other hand, we have the following consequence of Nullstellensatz:

Proposition 9. Let R = K|x1,- - ,x,] with K algebraically closed. Let p C R be a
prime ideal, and assume that [ ¢ p for some f € R. Then, there is a maximal ideal
p C m C R such that f ¢ m.

Proof. Assume that f € m for every maximal ideal containing p. This means that f is
constantly zero on V(p), so that f € I(V(p)). By nullstellensatz, I(V(p)) = \/p =p
hence f € p, contraddiction. O

In particular, to reconnect to our original motivation

Corollary 10. Let K be algebraically closed, and let g € K|[x1,--- ,2,]. Then for
any maximal idealm C K[x1,--- , x|, we have that m® is maximal, and contraction-
extension induces a one-to-one identification

{maximal ideals of K[x1,--- ,%n]g} ¢— {(x1—c1, -+ ,xn—cp) such that g(c1,- -+ ,¢,) # 0}

Proof. If mis amaximal ideal of K'[z1, - - - , ], then m®is a prime ideal of K'[x1, - - - , xy].
Moreover, g ¢ m¢, for otherwise m = (m¢)¢ = (1) which is a contradiction. But if
m¢ is not maximal, then there is a maximal ideal m® C n such that ¢ ¢ n by the
previous proposition. Hence n¢ # 1 and therefore m = n® by maximality. But then

m¢ = (n°)¢ = n. The other inclusion is easy to verify. O
This shows that in particular m — Spec(K[z1, - - ,z,],) is naturally identified to
the Zariski open D(g).
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