
Lecture 9

Domenico Valloni

0.1 Some comments on the previous lecture
In the last lecture we introduced algebraic subsets of Kn, for K an algebraically closed
field. Hilbert Nullstellensatz says that there is a one-to-one correspondence between
algebraic subsets of Kn and radical ideals I ⊂ K[x1, · · · , xn]. Now, pick a radical
ideal I and consider the corresponding algebraic subset V (I) ⊂ Kn. One would like
to define polynomial functions f : V (I) → K. This is done as follows. First, note that
any f ∈ K[x1, · · · , xn] can be naturally considered as a polynomial function

f : Kn → K (0.1)
(c1, · · · , cn) 7→ f(c1, · · · , cn). (0.2)

Then, to obtain a polynomial function on V (I), we simply restric the function above
to V (I)

Definition 1. A polynomial function V (I) → K is any function of the form f|V (I)

where f ∈ K[x1, · · · , xn].

Now, observe that since K is a ring, the set of polynomial functions on V (I) is
also a ring (where addition and multiplication are defined on the target). In fact, it is
easy to see that the ring of polynomial functions on V (I) is precisely K[x1, · · · , xn]/I
(why?). Thus, we interpret R = K[x1, · · · , xn]/I as the ring of functions on V (I) =
m− Spec(R) (where this equality follows from the previous lecture, and it is actually
an isomorphism of topological spaces, where we endow both of them with the Zariski
topology).
Example. Suppose that I is radical, but not prime, and still write R = K[x1, · · · , xn]/I .
Then, there are f, g ∈ R such that f, g ̸= 0 but fg = 0. This means that we have a
topological space V (I) and continuos functions f, g : V (I) → K which are non-zero,
but whose product is zero. Now, {f = 0}, {g = 0} ⊂ V (I) are closed subsets by con-
tinuity. Moreover, {f = 0}, {g = 0} ⊊ V (I) because neither of them are constantly
zero by assumption. On the other hand, {f = 0} ∪ {g = 0} because their product is
zero. This means that when I is not prime, the topological space V (I) is not irreducible
(as also explained in the previous lecture).

1 Dimension theory
In this section, we would like to define the notion of dimension of R = K[x1, · · · , xn]/I
where I is a prime ideal (and, in particular, radical). The reason why we do this only for
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prime ideals is clear: if I is not prime, then V (I) is not irreducible, and can be written
as a union of closed subsets, which may have different dimensions. For instance, we
may consider K[x, y] and I = (x(x− 1), x(y − 1)) = (x)(x− 1, y − 1). Then V (I)
corresponds in K2 to the y-axis and the point (1, 1). Intuitively, the former has dimen-
sion 1, and the latter has dimension 0. Our first definition of dimension will work well
only for finitely generated K-algebras, and uses the concept of transcendental degree
of field extension.

1.1 Transcendental degree
Let F ⊂ L be a field extension, and let A ⊂ L be any subset.

Definition 2. We say that A is algebraically independent over F if for any distinct
elements a1, · · · , am ∈ A and any polynomial f(x1, · · · , xn) ∈ F [x1, · · · , xn] we
have that f(a1, · · · , an) ̸= 0.

In general, for any subset A ⊂ L we define F ⊂ F [A] ⊂ L as the sub F -algebra
generated by A, and by F ⊂ F (A) ⊂ L as the subfield generated by A. We always
have F (A) = Frac(F [A]) (note that F [A] is a domain, why?). Moreover, any f ∈
F [A] can be written as f(a1, · · · , am) for some f ∈ F [x1, · · · , xm] and a1, · · · , am ∈
A.

Definition 3. Let F ⊂ L be a field extension. We say that A ⊂ L is a transcendental
basis for L over F if:

1. A is algebraically independent over F ;

2. L is algebraic over F (A) (i.e., the extension F (A) ⊂ L has finite degree).

Now, we prove three lemmas. We fix F ⊂ L field extension.

Lemma 4. Let a1, · · · , am, b ∈ L. Assume that b is algebraic over F (a1, · · · , am) ⊂
L. Then, there is a polynomial f(x1, · · · , xm, y) ∈ F [x1, · · · , xm, y] such that

1. f(a1, · · · , am, y) ∈ F (a1, · · · , am)[y] is not zero;

2. f(a1, · · · , am, b) = 0.

Proof. Since b is algebraic over F (a1, · · · , am), we can consider its minimal polyno-
mial

P (y) = yn + cn−1y
n−1 + · · · c1y + y ∈ F (a1, · · · , am)[y].

Now, any c ∈ F (a1, · · · , am) can be written as

c =
g(a1, · · · , am)

h(a1, · · · , am)

for some g, h ∈ F [x1, · · · , xm]. So, we write ci =
gi(a1,··· ,am)
hi(a1,··· ,am) . Note that hi(a1, · · · , am) ̸=

0 for every i. Now, we delete denominators, and we let

Q(y) :=
∏
i

hi(a1, · · · , am) · P (y) =
∏
i

hi(a1, · · · , am) · (
∑
j

cjy
j) =
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=
∑
j

(
gj(a1, · · · , am)

∏
i̸=j

hi(a1, · · · , am)

)
yj

Note that Q(y) ̸= 0 and that Q(b) = 0. Now, consider

f(x1, · · · , xn, y) :=
∑
j

(
gj(x1, · · · , xm)

∏
i ̸=j

hi(x1, · · · , xm)

)
yj ;

then f(a1, · · · , am, y) = Q(y) ̸= 0 and f(a1, · · · , am, b) = 0 which proves the
lemma.

Lemma 5 (Exchange lemma). Assume that b ∈ L is algebraic over F (a1, · · · , am) but
not algebraic over F (a1, · · · , am−1). Then, am is algebraic over F (a1, · · · , am−1, b).

Proof. We use the previous lemma and we find a polynomial f(x1, · · · , xm, y) such
that f(a1, · · · , am, y) ̸= 0 and f(a1, · · · , am, b) = 0. Consider now the polynomial

0 ̸= f(a1, · · · , am−1, xm, y) ∈ F (a1, · · · , am−1)[xm, y]

and write it as

f(a1, · · · , am−1, xm, y) =
∑
i,j

fijx
i
myj , fij ∈ F (a1, · · · , am−1).

We now rearrange the terms and write it as a polynomial in xm:

=
∑
i

(∑
j

fijy
j

)
xi
m.

Since this is not zero, at least one of its coefficients is not zero, i.e., there is i such
that

∑
j fijy

j ̸= 0. Moreover,
∑

j fijb
j ̸= 0 as well, because otherwise b would

be algebraic over F (a1, · · · , am−1), which contraddicts our assumption. From this it
follows that

0 ̸= P (xm) :=
∑
i

(∑
j

fijb
j

)
xi
m ∈ F (a1, · · · , am−1, b)[xm].

But P (am) = 0, so this proves the lemma.

Lemma 6. Let A = {a1, · · · , an}, B = {b1, · · · , bm} ⊂ L. Assume that

1. A is algebraically independent over F ;

2. A is algebraic over F (B).

Then n ≤ m.
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Proof. Up to reordering, write A ∩ B = {a1, · · · , ar} = {b1, · · · , br}. We can
consider the same statement for F ′ = F (A ∩ B) and A′ = {ar+1, · · · , am} and
B′ = {br+1, · · · , bn}. In fact, clearly A′ is algebraic independent over F ′ and alge-
braic over F ′(B′). If the statement is true, then we get n− r ≤ m− r i.e. n ≤ m. So
we can assume that A ∩ B = and prove the statement by induction on |A|. The case
|A| = 0 is obvious.

Choose C ⊂ {b1, · · · , bm} minimal with respect to |C| such that a1 is algebraic
over F (C). Such C must exist since A is algebraic over F (B).

1. C ̸=, for otherwise a1 would be algebraic over F , constraddicting that A is
algebraically independent over F ;

2. If bi ∈ C, then bi cannot be algebraic over F , for otherwise C ′ = C \{bi} would
still be such that a1 is algebraic over F (C ′), contraddicting minimality.

Now, pick any bi ∈ C. So, a1 is algebraic over F (C) but not algebraic over F (C \
{bi}), again by minimality. Let C ′ = (C \ {bi}) ∪ {a1}. By the exchange lemma,
bi is algebraic over F (C ′). Now, consider a new B′ = (B \ {bi}) ∪ {a1}. Note
that |B′| = |B| because a1 ̸= B since A ∩ B = ∅. On the other hand, A is still
algebraic over F (B′), because bi is algebraic over F (B′) and hence F (B) is algebraic
over F (B). But now A ∩ B′ = {a1}. So we can use the argument at the beginning
to reduce to the case where A = {a2, · · · , an} and B = {b1, · · · , b̂i, · · · , bn} and use
induction.

Corollary 7. If F ⊂ L has a finite transcendental basis, then all transcendental basis
have the same cardinality.

This is true also if the cardinality is not finite, but we won’t prove it.

Definition 8. The transcendental degree tr.deg.F (L) of F ⊂ L is the cardinality of a
transcendental basis of L over F .

Lemma 9. Assume that R = K[x1, · · · , xn]/I is a domain. Then Frac(R) has a finite
transcendental basis over K.

Proof. Note that R is generated, as a K-algebra, by the images x̄i of the variables
xi ∈ K[x1, · · · , xn]. So, Frac(R) is also generated as a field over K by A0 =
{x̄1, · · · , x̄n}. Now, either A0 is algebraic independent, in which case A0 is a tran-
scendental basis of Frac(R) over K, or there is an element x̄i ∈ A0 (which we may
assume wlog to be x̄1) that is algebraic over A1 = {x̄2, x̄3, · · · , x̄n}. In this case,
K(A1) ⊂ Frac(R) is an algebraic extension. Now, again, wither all the elements of
A1 are algebraic independent over K, so that A1 is a transcendental basis over K, or
there is an element x̄i ∈ A1, which we may suppose to be x̄2 up to reordering, which
is algebraic over A2 = {x̄3, x̄4, · · · , x̄n}. Note that again K(A2) ⊂ Frac(R) is alge-
braic. Keeping on going like this, we arrive at a certain Ak with k ≤ n such that all
the elements of Ak are algebraically independent and K(Ak) ⊂ Frac(R) is algebraic.
Thus Ak must be a transcendental basis of Frac(R) over K.
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Example. 1. The transcendental degree of F (x1, · · · , xn) over F is clearly n;

2. Let us compute the transcendental degree of the fraction field of K[x, y]/(x2 −
y3). Let us check that (x2 − y3) is prime, first of all. Since K[x, y] is a UFD,
it is enough to show that x2 − y3 is irreducible. Now, we can see this as a
polynomial over K(y). Since

√
y3 does not belong to K(y), we see that the

only possible factorizations are of the form P (y) · Q(y, x). But this does not
make sense in K[x, y] unless P is constant. So R = K[x, y]/(x2 − y3) is a
domain, and F Frac(R) is a field extension of K. Let x̄, ȳ be the images of x, y
respectively in R. Now, we have K ⊂ K(x̄) ⊂ F . Clearly, the last extension is
finite: F is generated by x̄ and ȳ and ȳ is algebraic over K(x̄) because it satisfies
the equation t3 − x̄2 = 0. Finally, we want to check that x̄ is algebraically
independent over K. But assume that there are ci ∈ K such that

c0 + c1x̄+ · · ·+ cn(x̄)
n = 0.

We can clearly assume c0 ̸= 0. Now, we lift this equation to K[x, y] and we find

c0 + c1x+ · · ·+ cnx
n = (x2 − y3) · P (x, y).

But by putting x = y = 0 we get c0 = 0 which is a contraddiction. Thus, x̄ is a
transcendental basis of Frac(R) over K.

Definition 10. Let R be a domain of the form K[x1, · · · , xn]/I for some field K. We
defined dim(R) = dim(V (I)) = tr.deg.K Frac(R).

2 Krull dimension
There is another notion of dimension which works for every ring. The intuitive idea
is the following (still K algebraically closed). Consider f ∈ K[x1, · · · , xn]. Then
V (f) ⊂ Kn must have dimension n − 1, because it is the level set of the (surjective)
function f : Kn → K at the point 0. In general V (f, g) ⊂ V (f) should have dimen-
sion n − 2 (except that in some degenerate cases..), and so on. This suggests, for I a
prime ideal, the following definition of dimension:

dim(V (I)) = length of maximal chain Z0 ⊊ Z1 ⊊ · · ·Zn = V (I),

where each Zi ⊂ V (I) is irreducible and closed. Using the Nullstellensatz, this trans-
lates to ring into the following general defintion:

Definition 11. Let R be a commutative ring. Then, the Krull dimension of R is

sup{n : ∃ a chain of prime ideals p0 ⊊ p1 ⊊ p2, · · · ,⊊ pn ⊊ R}.

If p ⊂ R is a prime ideal, its height is defined as

ht(p) = sup{n : ∃ a chain of prime ideals p0 ⊊ p1 ⊊ p2, · · · ,⊊ pn = p}.
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Example. 1. Consider R = K[x1, · · · , xn]. Then, we have a chain of prime ideals

(0) ⊂ (x1) ⊂ (x1, x2) ⊂ · · · ⊂ (x1, · · · , xn).

So the Krull dimension of K[x1, · · · , xn] is at least n. Let us show that this
chain is maximal, in the sense that if

(x1, · · · , xk) ⊂ p ⊂ (x1, · · · , xk+1)

is a prime ideal, then necessarily p = (x1, · · · , xk) or p = (x1, · · · , xk+1). Con-
sider the quotient K[x1, · · · , xn]/(x1, · · · , xk). By renaming the variables, and
by using the correspondence between ideals of the quotients and ideals contain-
ing (x1, · · · , xk), it is enough to show the following: for any polynomial ring
K[x1, · · · , xn], if p ⊂ (x1) is a prime ideal, then p = (x1) or p = (0). Now,
to prove this, assume that p ̸= 0, and take f ∈ p. Since f ∈ (x1), we can write
f = xi

1f0 with f0 /∈ (x1) and i > 0. Since p is prime, then either x1 ∈ p, which
then implies p = (x1) or f0 ∈ p, which is absurd.

2. The Krull dimension of any field is 0 (so, in algebraic geometry, fields corre-
spond to points);

3. The Krull dimension of a PID is one (why?). So, in algebraic geometry, Z cor-
respond to a ‘curve’.

We will prove in the following lectures the following fundamental theorem:

Theorem 12. Let K[x1, · · · , xn]/I be a domain. Then, the Krull dimension of R is the
same as the transcendental degree of Frac(R) over K.
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