Lecture 7

Domenico Valloni

This is our last lecture on homological algebra. We begin by proving the horseshoe
lemma introduced in the last lecture.

Notation. Given a bunch of modules Ay, --- , A,, and By, - -- , B,, we shall write an
element f € Hom(A1 @ ---® A,,, B1 @ - -+ ® Byy,) in matrix form, as follows:
S o fin
'S
fml e fmn

where fi;: A; — B; and for €A DDA, we have

€ B1®---©By,

Gnp fml

ay f11 ) fii(ar) + -+ fin(an)

fml(al) + +fmn(an)

Now, we begin the proof of the horseshoe lemma. We begin with a s.e.s. of modules
0 - A— B — C — 0 and two projective resolutions P, — A and R, — C. As
already said in the last lecture, our aim is to fill the dotted arrows of the following
diagram



'*****>P3@R3 ***** >P2@R2 ***** >P1@R1 ***** >P0@R0 ***** » B —— 0

|

RS RQ Rl Ro C

in such a way that:
1. The resulting diagram becomes commutative;
2. The middle row is a (necessarily projective) resolution of B.

Note. The vertical maps P, — P, ® R,, and P, ® R,, — R, are nothing but the
inclusion of the first factor and, resplectively, the projection onto the second factor.

Hence, if we manage to do this, we obtain automatically a short exact sequence of
projective resolutions, which is exactly what we need to obtain the long exact sequence
of Ext modules as explained in the previous lecture. As in the previous lecture, we put
Qn =P, ®R,.

Lemma 1. Suppose that we are able to find maps d2: Q,, — Q,_1 such that the
diagram above is commutative and (Qa,d%) is a complex (i.e., dZ o dB , = 0) and
dB: Qo — B is surjective. Then, Qs — B is automatically a resolution of B.

Proof. To check that this is a resolution, we only need to prove that all the homology
groups of (J, vanish. Put P_y = A, Q_1 = Band R_; = C. It follows that we have
a short exact sequence of complexes 0 — P, — Q¢ — Ro — 0. We know that this
induces a long exact sequence in cohomology

- = Hy(Po) = Hyp(Qo) = Hp(Re) — -

and since H,, (P,) = H,(R,) = 0 for every n (because those are exact by assumption)
we deduce that also H,,(Qe) = O for every n, hence that ), is exact (and, therefore, a
resolution of B). O



Hence it follows that we only need to fill the dotted arrows such that
1. The resulting diagram becomes commutative;

2. The middle row is a complex.

First step: determine df’. Let us look at the diagram

since Ry is projective and ¢ is surjective, we can fill the dotted arrow and find some
d§: Ry — B making the diagram commutative. Using the matrix notation, we then
define df = (¢ o df',dS). In this way, we clearly get a commutative diagram

0

1

P, A
L
PRy ——> B ——0
L b

Ry C 0

dy)

0

and it is easy to check that the middle row is surjective (why?).



Second step: determine d’. Consider now the diagram

0 0 0

he ) el

| Ll
PL® Ry -~ » PP@Ry —— B —— 0

| A

R, ! Ry 0 C 0

| |

0 0 0

we need to find d¥, which again we write in matrix notation
dB — (911 g12>
L= .
921 922
Now, the commutativity of the diagram

dit
P ——— B

| |

forces gog = dlc. Hence,
dB _ df g1
r=\o a
for some g;: Ry — Py. Finally, the condition that df o d¥ = 0 means that (using
matrix multiplication)

~ dd -

where the first zero on the right hand side comes from %4 od{! = 0. It follows that we
only need to find g1 : Ry — Py such that ¢pod o gy +dS od{ = 0. To show that such



g1 exists, look again at the diagram

0 0 0
e e,

d
Pl@Rl ***** >P0@R0*O>B*>O

}%1 4 1%0 - ZZZ Cw 0
| |
0 0 0

The first thing to notice is that —JOC o d{ lands in the image of ¢. Equivalently, this
means that —) o d§' o d{ = 0 which follows from the fact that 1) o d§ = d§. But then,
the following composition is a surjection
g, 4 ¢
Py — A = Im(¢)

since d§' is a surjection. Then, by the projectivity of R;, we can find g;: By — Py
such that ¢ o dg' 0 g; = —d§ o df.

A
Final step: induction. Suppose now that we have determined dZ = (dg 58) up

to some n > 1, where ¢g,,: R, — P,_1. We want to find df 1. Using the same
reasoning as before, we see that again dZ, ; has the form

4B L= (dr?ﬂ gré+1>
s 0 dnJrl

for some g,,+1: Rnq1 — Pp. Imposing the condition that dZ o dZ,; = 0 then yields

0= dﬁ gn dﬁ-&—l gn+1 _ 0 d;;‘gn-‘rl +gndg+1
0o da¢)\ 0 d<,, 0 0

so, we win if we can find g,41 such that dfl‘gn+1 + gndgﬂ = 0. Let us look at the
diagram

A iy diy s

d;,

Rpy1 —— R, T>Rn1 e

n+1 n n—1

again, to find g, 41, we need to use that R, is projective. We can do this as soon
as we check that —g,dS, | Ry41 — P,_1 lands in the image of d;;. But this is
equivalent to

d:zl—l ©gn© dS-',-l =0.



By induction, we have that d2* | o g, = —g,_1 o d$ and by substituting we get that
dﬁ—l ©Yn© dg—&-l = —gn_10d} o d§+1 =0

because dS o dS, ; = 0. This concludes the proof.

Example. In practice, the long exact sequence of Ext modules is used to compute Ext
as follows: suppose that we want to compute Ext*(A, N) for some R-modules A, N.
One then finds a short exact sequence containing A, e.g.,

0—)A1—>A—>A2—>0

and such that one known Exti(Al, N) and Ext’(Az, N). One then uses the long
exact sequence to determine Ext’(A4, N). As a practical example, let us compute
Ext"(Z/n,Z/m) for R = Z and n, m > 1. The short exact sequence

0-Z5%Z—Z/n—0

yields the long exact sequence of Ext groups

0 — Hom(Z/n,Z/m) — Hom(Z, Z/m) — Hom(Z, Z/m) — Ext*(Z/n,Z/m) — Ext*(Z,Z/m) — - - -

now, since 7 is projective, we know that Ext*(Z,Z/m) = 0 for every i > 0. From
the exactness of the sequence above, it then follows that also Ext*(Z/n, Z/m) = 0 for
i > 1. By identifying Hom(Z,Z/m) = Z/m we then get an exact sequence

0 — Hom(Z/n, Z/m) — Z/m - Z./m — Ext'(Z/n,Z/m) — 0
and hence
1. Ext®(Z/n,Z/m) = Hom(Z/n,Z/m) = Z/(n,m);
2. Ext'(Z/n,Z/m) = coker(Z/m - Z/m) = Z/(n,m);
3. Ext"(Z/n,Z/m) = 0 fori > 1.

1 Ext and Yoneda extensions

We retain the usual notation: R is a ring and N, M are modules over it. In this final
chapter, we shall give a concrete interpretation of Ext modules in terms of extensions.

Definition 2. ¢ An extension of N by M is a s.e.s.
E=0-N—-E—->M-—=0

of R-modules.



» Two extensions € and &’ are Yoneda equivalent if there is a morphism f: F —
E’ such that the following diagram commutes

0 N E M 0
NN
0 N E' M 0

where the outmost vertical maps are the identity of N and M respectively.

Remark 1. It is easy to see that if such f exists, then it is necessarily an isomorphism.

We denote by YExt(M, N) the set of Yoneda equivalence classes of extensions of
N by M.

Example. Take R = Z and N, M = Z/3. Then, an extension of Z/3 by itself is a
short exact sequence of abelian groups

0—-2/3—FE—1Z/3—0.

Hence, we have only two possibilities for F, namely, £ = Z/9and E =2 Z/3 x Z/3.
On the other hand, it is easy to check that YExt(Z/3, Z/3) consists of three extensions:

* The split extension 0 — Z/3 — Z/3 ®Z/3 — Z/3 — 0;

s The extension 0 — Z/3 — Z/9 = Z/3 — 0, where the first map sends
[1] — [3] and the last map is the natural quotient map;

s The extension 0 — Z/3 — Z/9 —> 7Z/3 — 0 where the first map is still
[1] = [3].

Our aim now is to show the following:
Theorem 3. There is a natural bijection © : YExt(M, N) = Ext!'(M, N).

Remark 2. * The set YExt(M, N) makes sense in any abelian category. On the
other hand, in order to define Ext® in an abelian category, we need that every
object admits a projective resolution.

* Yoneda also constructed YExti(M ,N) for i > 0 in any abelian category, and
one also has YExt' (M, N) = Ext' (M, N) when this latter is defined.

* There is a natural operation on YExt(M, N) (the Baer sum) which turns this set
into a module (the split extension being the identity element). Then, the bijection
above upgrades to be a module isomorphism.

The proof of the theorem will not be part of the exam, so I will only sketch it here.
Feel free to fill the missing details if the material interests you.

Definition 4. An extension £: 0 — N i) EL M = 0is split if there is a map
p: E— N suchthatpo f = Idy.



Remark 3. * Equivalently, show that & is split if and only if there is a section
s: M — FE such that g o s = Idp,. This is true in every abelian category. Is it
true in the case of extensions of non-abelian groups?

« It is easy to see that any two split extensions of N by M are Yoneda equivalent
(show this).

The first connection between the Ext functors and extensions come from the fol-
lowing:

Lemma 5. Suppose that Ext! (M, N) = 0. Then, every extension of N by M is split.

Proof. Consider an extension 0 -+ N — F — M — 0 and apply Hom(—, N) to it.
We obtain an extact sequence

0 — Hom(M, N) — Hom(E, N) — Hom(N, N) — Ext'(M,N) = 0.

In particular, the map Hom(F, N) — Hom(N, N) is surjective. Hence, there is p €
Hom(E, N) which is mapped to Idy € Hom(N, N). But then p clearly defines a
splitting as in Definition 4] O

In fact, the proof above suggests how to construct the map ©. Pick any extension
€:0— N — E — M — 0and apply Hom(—, N) to it. This yields a map

- = Hom(N, N) % Ext!(M,N) — -

and one defines ©(€) = §(Idy). If € and &’ are Yoneda equivalent, then we have a
diagram

e: 0 N E M 0
e 0 N E M 0

applying Hom(—, N) to it, we get a diagram

. —— Hom(N,N) —— Ext'(M,N) — ---

. —— Hom(N,N) — Ext'(M,N) — ---
where both vertical maps are the identity. It follows that ©(€) = ©(€&’), and hence that
the map is well-defined. We show now how to construct the inverse ¥: Ext*(M, N) —
YExt(M, N). Pick a short exact sequence
0-KLpPLm—o
where P is projective. Apply Hom(—, N) to it and obtain

.-+ = Hom(K, N) 2 Ext' (M, N) — Ext!(P,N) = 0,



where the last vanishing is due to the fact that P is projective. Hence we get a surjection
Hom (K, N) — Ext'(M, N). Given an element 2 € Ext' (M, N), we wish to find
an extension & such that ©(€) = z. Since the map above is surjective, we can find
B € Hom(K, N) such that §(8) = =.

Now, suppose we can find an extension £: 0 -+ N — E — M — 0 which fits in the
following diagram:

0 K-t sp_9,nm 0
I -
0 N E M 0

I claim that ©(&) = x. To show this, simply apply Hom(—, N) to the diagram above
and obtain:
fr—m-r

Be Hom(K,N) —— Ext!(M, N)
idy € Hom(N, N) —— Ext'(M, N)

. In order to construct E, one defines

E = coker(K - P® N)
k= (f(k), =B(k)).
I leave it to you to check the following:

* There is a natural surjection E — M which sends the class of (p,n) to g(p) and
whose kernel is naturally identified with N. Thus E defines an extension of N
by M.

* Another choice of § defines Yoneda equivalent extensions.

In any case, all the details can be found e.g. in Weibel’s book.
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