
Lecture 7

Domenico Valloni

This is our last lecture on homological algebra. We begin by proving the horseshoe
lemma introduced in the last lecture.

Notation. Given a bunch of modules A1, · · · , An and B1, · · · , Bm we shall write an
element f ∈ Hom(A1 ⊕ · · · ⊕An, B1 ⊕ · · · ⊕Bm) in matrix form, as follows:

f =

 f11 · · · f1n
...

. . .
...

fm1 · · · fmn



where fij : Aj → Bi and for

a1...
an

 ∈ A1 ⊕ · · · ⊕An we have

f

a1...
an

 =

 f11 · · · f1n
...

. . .
...

fm1 · · · fmn


a1...
an

 =

 f11(a1) + · · ·+ f1n(an)
...

fm1(a1) + · · ·+ fmn(an)

 ∈ B1⊕· · ·⊕Bm

Now, we begin the proof of the horseshoe lemma. We begin with a s.e.s. of modules
0 → A → B → C → 0 and two projective resolutions P• → A and R• → C. As
already said in the last lecture, our aim is to fill the dotted arrows of the following
diagram

1



•

0

· · · P3 P2 P1 P0 A 0

· · · P3 ⊕R3 P2 ⊕R2 P1 ⊕R1 P0 ⊕R0 B 0

· · · R3 R2 R1 R0 C 0

0

dA3 dA2 dA1 dA0

ϕ

ψ

dC3 dC2 dC1 dC0

in such a way that:

1. The resulting diagram becomes commutative;

2. The middle row is a (necessarily projective) resolution of B.

Note. The vertical maps Pn → Pn ⊕ Rn and Pn ⊕ Rn → Rn are nothing but the
inclusion of the first factor and, resplectively, the projection onto the second factor.

Hence, if we manage to do this, we obtain automatically a short exact sequence of
projective resolutions, which is exactly what we need to obtain the long exact sequence
of Ext modules as explained in the previous lecture. As in the previous lecture, we put
Qn := Pn ⊕Rn.

Lemma 1. Suppose that we are able to find maps dBn : Qn → Qn−1 such that the
diagram above is commutative and (Q•, d

B
• ) is a complex (i.e., dBn ◦ dBn+1 = 0) and

dB0 : Q0 → B is surjective. Then, Q• → B is automatically a resolution of B.

Proof. To check that this is a resolution, we only need to prove that all the homology
groups of Q• vanish. Put P−1 = A, Q−1 = B and R−1 = C. It follows that we have
a short exact sequence of complexes 0 → P• → Q• → R• → 0. We know that this
induces a long exact sequence in cohomology

· · · → Hn(P•) → Hn(Q•) → Hn(R•) → · · ·

and sinceHn(P•) = Hn(R•) = 0 for every n (because those are exact by assumption)
we deduce that also Hn(Q•) = 0 for every n, hence that Q• is exact (and, therefore, a
resolution of B).

2



Hence it follows that we only need to fill the dotted arrows such that

1. The resulting diagram becomes commutative;

2. The middle row is a complex.

First step: determine dB0 . Let us look at the diagram

0

P0 A 0

B

R0 C 0

0

dA0

ϕ

ψ
d̃C0

dC0

since R0 is projective and ψ is surjective, we can fill the dotted arrow and find some
d̃C0 : R0 → B making the diagram commutative. Using the matrix notation, we then
define dB0 = (ϕ ◦ dA0 , d̃C0 ). In this way, we clearly get a commutative diagram

0

P0 A 0

P0 ⊕R0 B 0

R0 C 0

0

dA0

ϕ

dB0

ψ

dC0

and it is easy to check that the middle row is surjective (why?).
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Second step: determine dC1 . Consider now the diagram

0 0 0

P1 P0 A 0

P1 ⊕R1 P0 ⊕R0 B 0

R1 R0 C 0

0 0 0

dA1 dA0

ϕ

dB0

ψ

dC1 dC0

we need to find dB1 , which again we write in matrix notation

dB1 =

(
g11 g12
g21 g22

)
.

Now, the commutativity of the diagram

P1 P0

P1 ⊕R1 P0 ⊕R0

dA1

forces g11 = dA1 and g21 = 0 whereas the commutativity of the diagram

P1 ⊕R1 P0 ⊕R0

R1 R0
dC1

forces g22 = dC1 . Hence,

dB1 =

(
dA1 g1
0 dC1

)
for some g1 : R1 → P0. Finally, the condition that dB0 ◦ dB1 = 0 means that (using
matrix multiplication)

0 = (ϕ ◦ dA0 , d̃C0 )
(
dA1 g1
0 dC1

)
= (0, ϕ ◦ dA0 ◦ g1 + d̃C0 ◦ dC1 )

where the first zero on the right hand side comes from dA0 ◦ dA1 = 0. It follows that we
only need to find g1 : R1 → P0 such that ϕ ◦dA0 ◦ g1+ d̃C0 ◦dC1 = 0. To show that such
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g1 exists, look again at the diagram

0 0 0

P1 P0 A 0

P1 ⊕R1 P0 ⊕R0 B 0

R1 R0 C 0

0 0 0

dA1 dA0

ϕ

dB0

ψ

dC1

d̃C0

dC0

The first thing to notice is that −d̃C0 ◦ dC1 lands in the image of ϕ. Equivalently, this
means that −ψ ◦ d̃C0 ◦ dC1 = 0 which follows from the fact that ψ ◦ d̃C0 = dC0 . But then,
the following composition is a surjection

P0
dA0−−→ A

ϕ−→ Im(ϕ)

since dA0 is a surjection. Then, by the projectivity of R1, we can find g1 : R1 → P0

such that ϕ ◦ dA0 ◦ g1 = −d̃C0 ◦ dC1 .

Final step: induction. Suppose now that we have determined dBn =

(
dAn gn
0 dCn

)
up

to some n > 1, where gn : Rn → Pn−1. We want to find dBn+1. Using the same
reasoning as before, we see that again dBn+1 has the form

dBn+1 =

(
dAn+1 gn+1

0 dCn+1

)
for some gn+1 : Rn+1 → Pn. Imposing the condition that dBn ◦ dBn+1 = 0 then yields

0 =

(
dAn gn
0 dCn

)(
dAn+1 gn+1

0 dCn+1

)
=

(
0 dAn gn+1 + gnd

C
n+1

0 0

)
so, we win if we can find gn+1 such that dAn gn+1 + gnd

C
n+1 = 0. Let us look at the

diagram

· · · Pn Pn−1 Pn−2 · · ·

Rn+1 Rn Rn−1 Rn−2 · · ·

dAn dAn−1 dAn−2

dCn+1

gn

dCn

gn−
1

dCn−1

gn−
2

again, to find gn+1, we need to use that Rn+1 is projective. We can do this as soon
as we check that −gndCn+1 : Rn+1 → Pn−1 lands in the image of dAn . But this is
equivalent to

dAn−1 ◦ gn ◦ dCn+1 = 0.
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By induction, we have that dAn−1 ◦ gn = −gn−1 ◦ dCn and by substituting we get that

dAn−1 ◦ gn ◦ dCn+1 = −gn−1 ◦ dCn ◦ dCn+1 = 0

because dCn ◦ dCn+1 = 0. This concludes the proof.

Example. In practice, the long exact sequence of Ext modules is used to compute Ext
as follows: suppose that we want to compute Exti(A,N) for some R-modules A,N .
One then finds a short exact sequence containing A, e.g.,

0 → A1 → A→ A2 → 0

and such that one known Exti(A1, N) and Exti(A2, N). One then uses the long
exact sequence to determine Exti(A,N). As a practical example, let us compute
Exti(Z/n,Z/m) for R = Z and n,m > 1. The short exact sequence

0 → Z n−→ Z → Z/n→ 0

yields the long exact sequence of Ext groups

0 → Hom(Z/n,Z/m) → Hom(Z,Z/m) → Hom(Z,Z/m) → Ext1(Z/n,Z/m) → Ext1(Z,Z/m) → · · ·

now, since Z is projective, we know that Exti(Z,Z/m) = 0 for every i > 0. From
the exactness of the sequence above, it then follows that also Exti(Z/n,Z/m) = 0 for
i > 1. By identifying Hom(Z,Z/m) ∼= Z/m we then get an exact sequence

0 → Hom(Z/n,Z/m) → Z/m ·n−→ Z/m→ Ext1(Z/n,Z/m) → 0

and hence

1. Ext0(Z/n,Z/m) = Hom(Z/n,Z/m) ∼= Z/(n,m);

2. Ext1(Z/n,Z/m) ∼= coker(Z/m ·n−→ Z/m) ∼= Z/(n,m);

3. Exti(Z/n,Z/m) = 0 for i > 1.

1 Ext and Yoneda extensions
We retain the usual notation: R is a ring and N,M are modules over it. In this final
chapter, we shall give a concrete interpretation of Ext modules in terms of extensions.

Definition 2. • An extension of N by M is a s.e.s.

E := 0 → N → E →M → 0

of R-modules.
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• Two extensions E and E′ are Yoneda equivalent if there is a morphism f : E →
E′ such that the following diagram commutes

0 N E M 0

0 N E′ M 0

= f =

where the outmost vertical maps are the identity of N and M respectively.

Remark 1. It is easy to see that if such f exists, then it is necessarily an isomorphism.

We denote by YExt(M,N) the set of Yoneda equivalence classes of extensions of
N by M .

Example. Take R = Z and N,M = Z/3. Then, an extension of Z/3 by itself is a
short exact sequence of abelian groups

0 → Z/3 → E → Z/3 → 0.

Hence, we have only two possibilities for E, namely, E ∼= Z/9 and E ∼= Z/3 × Z/3.
On the other hand, it is easy to check that YExt(Z/3,Z/3) consists of three extensions:

• The split extension 0 → Z/3 → Z/3⊕ Z/3 → Z/3 → 0;

• The extension 0 → Z/3 → Z/9 π−→ Z/3 → 0, where the first map sends
[1] 7→ [3] and the last map is the natural quotient map;

• The extension 0 → Z/3 → Z/9 −π−−→ Z/3 → 0 where the first map is still
[1] 7→ [3].

Our aim now is to show the following:

Theorem 3. There is a natural bijection Θ: YExt(M,N)
∼−→ Ext1(M,N).

Remark 2. • The set YExt(M,N) makes sense in any abelian category. On the
other hand, in order to define Exti in an abelian category, we need that every
object admits a projective resolution.

• Yoneda also constructed YExti(M,N) for i > 0 in any abelian category, and
one also has YExti(M,N) ∼= Exti(M,N) when this latter is defined.

• There is a natural operation on YExt(M,N) (the Baer sum) which turns this set
into a module (the split extension being the identity element). Then, the bijection
above upgrades to be a module isomorphism.

The proof of the theorem will not be part of the exam, so I will only sketch it here.
Feel free to fill the missing details if the material interests you.

Definition 4. An extension E : 0 → N
f−→ E

g−→ M → 0 is split if there is a map
p : E → N such that p ◦ f = IdN .
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Remark 3. • Equivalently, show that E is split if and only if there is a section
s : M → E such that g ◦ s = IdM . This is true in every abelian category. Is it
true in the case of extensions of non-abelian groups?

• It is easy to see that any two split extensions of N by M are Yoneda equivalent
(show this).

The first connection between the Ext functors and extensions come from the fol-
lowing:

Lemma 5. Suppose that Ext1(M,N) = 0. Then, every extension of N by M is split.

Proof. Consider an extension 0 → N → E → M → 0 and apply Hom(−, N) to it.
We obtain an extact sequence

0 → Hom(M,N) → Hom(E,N) → Hom(N,N) → Ext1(M,N) = 0.

In particular, the map Hom(E,N) → Hom(N,N) is surjective. Hence, there is p ∈
Hom(E,N) which is mapped to IdN ∈ Hom(N,N). But then p clearly defines a
splitting as in Definition 4.

In fact, the proof above suggests how to construct the map Θ. Pick any extension
E : 0 → N → E →M → 0 and apply Hom(−, N) to it. This yields a map

· · · → Hom(N,N)
δ−→ Ext1(M,N) → · · ·

and one defines Θ(E) := δ(IdN ). If E and E′ are Yoneda equivalent, then we have a
diagram

E : 0 N E M 0

E′ : 0 N E′ M 0

= =

applying Hom(−, N) to it, we get a diagram

· · · Hom(N,N) Ext1(M,N) · · ·

· · · Hom(N,N) Ext1(M,N) · · ·

= =

where both vertical maps are the identity. It follows that Θ(E) = Θ(E′), and hence that
the map is well-defined. We show now how to construct the inverse Ψ: Ext1(M,N) →
YExt(M,N). Pick a short exact sequence

0 → K
f−→ P

g−→M → 0

where P is projective. Apply Hom(−, N) to it and obtain

· · · → Hom(K,N)
δ−→ Ext1(M,N) → Ext1(P,N) = 0,
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where the last vanishing is due to the fact that P is projective. Hence we get a surjection
Hom(K,N) ↠ Ext1(M,N). Given an element x ∈ Ext1(M,N), we wish to find
an extension E such that Θ(E) = x. Since the map above is surjective, we can find
β ∈ Hom(K,N) such that δ(β) = x.
Now, suppose we can find an extension E : 0 → N → E → M → 0 which fits in the
following diagram:

0 K P M 0

0 N E M 0

f

β

g

=

I claim that Θ(E) = x. To show this, simply apply Hom(−, N) to the diagram above
and obtain:

β x

β ∈ Hom(K,N) Ext1(M,N)

idN ∈ Hom(N,N) Ext1(M,N)

δ

=

. In order to construct E, one defines

E := coker(K → P ⊕N)

k 7→ (f(k),−β(k)).

I leave it to you to check the following:

• There is a natural surjection E →M which sends the class of (p, n) to g(p) and
whose kernel is naturally identified with N . Thus E defines an extension of N
by M .

• Another choice of β defines Yoneda equivalent extensions.

In any case, all the details can be found e.g. in Weibel’s book.
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