Lecture 5

Domenico Valloni

1 The Ext modules are well-defined

The aim of this lecture is to show that the Ext modules, as defined in the previous
lecture, are actually well-defined (do not depend on any choice).
We denote a chain complex of R-modules by (F,, fo), s0

fn n
(anc) = "'F7L+1 i>F‘n f—>Fn—1"'

Definition 1. Let (F,, fo) and (Gl, ge ) be chain complexes. A morphism ¢)e: (Fe, fo) —
(G, ge) is given by a collection of (R-module) morphisms 1);: F; — G; such that the
following diagram commutes

) fri2 Fn+1 frnt1 F, fn F fno1
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meaning that ¥, © f,41 = gnt1 © Yn1q forevery n € Z.

Remark 1. The set of morphisms between two chain complexes form naturally a R-
module.

Proposition 2. Any morphism of chain complexes o : (Fo, fo) = (G, ge) induces a
morphism on the homology groups.

Proof. In order to prove the proposition we only need to show that for every i € Z we
have that (a) v; sends ker(f;) to ker(g;) and (b) that Im(f;+1) to Im(g;+1).

(a) If x € ker(f;) then 0 = ;1 (fi(2)) = ¢:(¥i(x)).

(b) If x € Im(f;+1) then there is some y € F;1; such that f;11(y) = x. Then we
compute ¢;(z) = Yi(fir1(y)) = gir1(Yir1(y)) € Im(giya).

Recall that the homology groups are R-modules. Verify that the induced maps are also
a R-module morphisms. O

If ¢ = 1), is a morphism of chain complexes, we denote by H,,(¢) the morphism
induced on the n-th homology group. In general, the category of chain complexes over
aring R is, for many reasons, too big for our considerations, meaning that there are



many different chain complexes that we would like to consider equivalent (this is in
analogy with topology, where you may want to consider to spaces equivalent if they
are homotopic). For instance, we may only be interested in the homology of a cochain
complex, so we can call two chain complexes equivalent if there are two morphisms
Y: Fg — Go and ¢: G4 — F, such that induced morphism on each homology group
are one the inverse of the other. In the end of this lecture, we shall define a finer
equivalence relation of this one: homotopy.

1.1 Projective modules

Projective modules are a generalization of free modules. The fact is that the definition
of a projective module can be made in terms of arrows and can therefore be applied in
any category.

Definition 3. We say that a R-module P is projective if for any surjection of R-

modules 7: A — B and any map P I, B we can find a dotted arrow (a lift”)

1
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which makes the diagram above commutative.
Note that the dotted arrow is in general not unique, as the next example shows.
Proposition 4. Any free module is projective.

Proof. We need to check that we can always fill the dotted arrow above when P =
R! is a free module. Let e; with i € I be the canonical basis of R!. Note that by
the universal property of direct sum, a morphism from R’ to another module A is
determined by prescribing an element a; € A for every ¢ € I. Then, the associated

map RT — Ais the unique one that sends e; to a;. Write b; := f(e;). Since 7 is
surjective, we can find a; € A such that w(a;) = b; for every ¢ € I. We can then define
the lift as the map R? — A which sends e; to a;. O

The motivation behing the definition of projective module comes from the follow-
ing observation: a module P is projective if and only if the functor Hom (P, —) is
exact.

Remark 2. In general, the covariant functor Hom (P, —) is only left-exact. Asking for
it to be exact is the same as asking that for any surjection 7: A — B the induced map
Hom(P, A) — Hom(P, B) is surjective. This is clearly equivalent to the definition of
projective module.

It is easy to characterize projective modules:

Proposition 5. A module P is projective if and only if there is another module M such
that P & M is free.



Proof. We prove both implication. So assume that P is projective, we need to exhibit
P as a direct summand of a free module. We choose a free module F' together with a
surjection m: F' — P (we can always do this, see the previous lecture notes). Now, we
use that P is projective and consider the following diagram

“1d
PP

and we choose a dotted arrow that makes it commutative, say we call if h: P — F.
Note that h must be necessarily injective (why?). Now, we consider II := h o 7w which
is an endomorphism of F'.
Claim 5.1. The map II is a projector, i.e., Il o IT = II.
Proof of claim. In fact, we compute IIoll = homohor and we notice that roh = Idp.
In general, everytime one has a projector II: M/ — M on a module M, one can
decompose M = Im(P) @ ker(II) (homework!). So, we can write F' = ker(II) ®
Im(II). But Im(II) = h(w(F)) = h(P) because 7 is surjective. Since h is injective,
we can identify P = h(P).
To prove the other direction, we assume that there is a module M such that P &
M = Fis free, and we need to show that P is projective. So we consider any diagram

3 7 l
. m
// f
P —— B.
and we need to find a dotted arrow. Now, we consider another diagram obtained from
the previous one as follows

3 /)I J{
g ™

raM —L B
where we define f(p, m) = f(p) for every (p,m) € P @& M. Since F is free, it
is projective, so we can fill the dotted arrow with some h: P & M — A. Then, the
composition
h:P—sPaM2 A

defines the required lifting, where the first map is simply the inclusion of P in P & M
given by p — (p,0). O

As I said before, in general, projective resolutions will be used in lieu of free reso-
lutions.



Definition 6. A projective resolution of a module A is by definition a resolution (= an
exact chain complex)

Y NNy LNy N LN

where each P; is projective for 7 > 0.

One of the main properties of projective resolutions (which holds in general abelian
categories) is the following important fact:

Theorem 7. Assume that (P., f,) is a projective resolution of A and that (Qe, ge) is
a projective resolution of B. Then, for any module morphism ¢: A — B we can find
a morphism of chain complexes 1¢: Py — Qo lifting 1, i.e., such that the following
commutes
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Proof. We prove this by induction. We put for simplicity Py = A, Q_; = B and

1_1 = 1. The first step is to show that we can find 1)y. So, we need to find a dotted
arrow

0.
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making the diagram commutative. We use that P, is projective and that gy is surjective,
to find a map vg: Py — Qo which lifts the map ¢ o fo: Py — B. Now, assume that
we have found ¢; for every ¢ > n and we want to construct ¥,, 1. We consider the
diagram

Pn+1 frt1 P, fn P, fn-1

J{wn J{"/)n -1

9n+1 9n
Qn+1 — Qn — anl —_—
since both complexes are exact, we have that ker(g,,) = Im(g,+1). Hence, in order to
use the projectivity of P, 41, we only have to show that the composition
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lands in ker(g,) = Im(g,1). If this is the case, we can apply the same reasoning as
for the zeroth step. So, we only need to show that g,, o ¥,, o f,,11 = 0. We compute

gnownofn—i-l :wn—lofnofn-&-l =0

because g, © ¥, = ¥p_1 o f, by induction and f,, o f,+1 = O because F, is a
complex. U

In general, the map of chain complexes lifting 1 is not unique. But we can under-
stand how two different lifting are related to each-other. To do this, let us begin from
the first step in the previous proof. If ¢ is another lifting, then we clearly have that
1o — 1, has image in ker(go), since

goo (Yo —1y) =gooto—gooy =10 fo—1o fo=0.

Since ker(go) = Im(g1) by exactness, we can use the projectivity of P to lift the map
o — Y}y Py — Im(g1) toamap hg: Py — P;. Upshet: there is amap ho: Py — @1
such that o — ¥{ = g1 © ho.

Now, we look at the next degree, and we want to understand the difference v —1].
But this time the morphism vy — 1)} does not necessarily land in Im(g,). Nevertheless,
it would if 49 = 1){, as it happened before. This suggests that the obstruction’ to
repeat the procedure above and find hy: P, — Q2 is given by the difference 109 — 9.
To make this formal, we apply g1 and compute

gio (¥ — 1) =too fi =0 fi = giohgo fi.
From the equation above we gather that
gio(W =) —hoofi)=0

and hence that ¢; — ¢} — ho o f1 lands in ker(g;) = Im(g2). So we can again use that
Py is projective and find a map h;: Py — Q2 such that ¢y — ¢ = go 0o hy + hg o f71.
But we can repeat this procedure indefinitively and find that

There are maps h;: P; — Q;+1 for ¢ > 0 such that ¢; — ¢} = g;y1 0h; + hi—1 0 f;.

Definition 8. Two morphisms ,v¢’: F, — G4 of chain complexes are homotopy
equivalent if there are maps he : Ps — (Jo+1 Which satisfies the relations boxed above.

Remark 3. There is an equivalent notion for cochain complexes, it is just a matter of
reorganizing the indeces.

The main fact is the following:
Proposition 9. Tivo homotopic morphisms induce the same map in homology.

Proof. In fact, pick any « € H;(F,), and choose a representative a € ker(f;). Now,
we compute

¥i(a) — Yi(a) = (git1 0 hi)(a) + (hi—1 o fi)(a) (gi+1 0 hi)(a)

and hence ¥;(a) — ¥(a) € Im(g;+1). But the ¢;(a) = .(a) when seen as elements
of Hi(G.) = ker(g;)/ Im(gi11). O

acker(fn)



Having defined homotopy equivalence of morphisms, it is easy to extend it to chain
complexes

Definition 10. We say that two chain complexes F, and G, are homotopic if there are
two morphisms ¢ : Fy — G4 and ¢p: G4 — F, such that 1 o ¢ is homotopy equivalent
to the identity of G4 and ¢ o 1 is homotopy equivalent to the identity of F,.

Now, what we have proved before can be summarized as follows: let P, be a
projective resolution of A and let (), be a projective resolution of B and letv): A — B
be a morphism. Then any two lifts 1, ¢, : Py — Q4 are homotopic equivalent.

Corollary 11. If 1e: Py — P, is a lift of the identity Ids: A — A, then 1, is
homotopic to the identity of A,.

Proof. In fact, both the identity of A, and 1), are lifts of the identity of A. O

This leads to the proof of our main result, namely, that Ext modules are well-
defined. We recall that we fix a module N and we consider the contravariant functor
F = Hom(—, N). To define the Ext modules Ext’(A, N) we choose a projective
resolution P, of A and apply F' to it and obtain a cochain complex

F(P,) =Hom(Py, N) = Hom(P,N) — - -- .
Then we define Ext’(A, N) = H"(F(P,)). We prove

Theorem 12. Let P,, Qs be two projective resolutions of A. Then for any n we have
a natural isomorphism H,,(F(P,)) =2 H,(F(Q.)).

Proof. Pick any lift ¢: Py — Qe and ¢: Py — (@, of the identity of A (consid-
ered in both directions). We know that ¢ o 1 is homotopic to the identity of A via
some homotopy he because of the corollary above. Now, we apply F' to obtain maps
F(): F(Qe) — F(P,) and F(¢): F(Ps) — F(Q,) (recall that F is contravariant).
But then also F'(¢)) o F(¢) is homotopic to the identity of F'(P,) via the maps F'(hs)
(why?). Hence, the induced maps in cohomology

H"(F(¢)): H"(F(P,)) — H"(F(Q.))

and
H"(F(y)): H"(F(Qs)) — H"(F(P,))

are one the inverse of the other. Finally, the map F'(¢) does not depend on the chosen
lift ¢, because we know that any other lift is homotopic to ¢. O
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