
Lecture 4

Domenico Valloni

1 First notions of homological algebra
Let R be a ring and fix a module M over R. In this lecture we consider the association

A 7→ Hom(A,M) =: F (A)

where A is any R-module. Note that then also F (A) is a module, where addition and
scalar multiplication are inherithed from the target. For instance, if M = R, then
F (A) = A∨ = Hom(A,R) is by definition the dual of A. When R is a field, this
corresponds to the usual dual of vector spaces.

The considerations that we are going to make today and in the following lectures
belong to the subject of homological algebra. This is a broad and general subject
whose techniques are applied to many different areas of mathematics, one of them
being modules over a ring. The constructions and considerations that we are going
to make are completely general, and work in basically every abelian category which
appears in nature (for instance, categories of sheaves in geometry, categories of Galois
modules in number theory).

Lemma 1. Any map of R-modules g : A → B induces a map F (g) : F (B) → F (A).

Proof. The map F (B) → F (A) is given by associating to any g ∈ F (B) = Hom(B,M)
the composition g ◦ f ∈ Hom(A,M). One easily sees that this is a map of R-
modules.

Note also this also behaves well with composition, that is, if we have two maps
g : A → B and h : B → C then F (h ◦ g) = F (g) ◦ F (h). In this sense, we say that F
is a controvariant functor. A functor is a morphism between categories. I do not want
to say what is a category, but I can say what a functor on R-modules is:

Definition 2. A covariant functor on R-modules is a law F which associated to any
module A another module F (A) and for any map g : A → B a map F (g) : F (A) →
F (B). This association must also behave well under composition. Similarly, we say
that the functor is contravariant if it reverses the order of the arrows.

For instance, we can also consider the functor A 7→ Hom(M,A). This is now
covariant.

The first question is: how does F behave with respect to injective or surjective
maps, and to exact sequences?
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Lemma 3. If g : A → B is surjective, then F (g) : F (B) → F (A) is injective.

Proof. Pick and u ∈ F (B) = Hom(B,M) and assume that u ◦ g = 0 ∈ F (A). This
means that for every a ∈ A u(g(a)) = 0. But g is surjective, hence, for any b ∈ B we
also have that u(b) = 0. Hence u = 0 and the map is injective.

Assume now that g : A → B is injective. Then, the map F (g) is in general not
surjective. One example can be given as follows: pick any ring R and a non-zero
divisor r ∈ R. Consider the injective map of R-modules R

·r−→. Then, what is the
induced map F (R) → F (R)? It is simply the map that sends u ∈ Hom(R,M) = M

to r ·u. Thus, after identifying F (R) with M , we see that F (r) is nothing but M r−→ M
which is in general neither injective (if for intance M has r-torsion) nor surjective
(think R = Z and r > 1).

Lemma 4. Let 0 → A
g−→ B

h−→ C → 0 be exact. Then

0 → F (C)
F (h)−−−→ F (B)

F (g)−−−→ F (A)

is exact.

Proof. We know that the first map is injective by the previous Lemma, so we only
need to show that ker(F (g)) = Im(F (h)). We prove both containmnents. So, pick
u ∈ F (B) and assume that u ∈ Im(F (h)). This simply means that u = v ◦ h for
v ∈ F (C). Now, F (g)(u) = u ◦ g = v ◦ h ◦ g and h ◦ g = 0 becasue the original
sequence is exact. For the other containment, assume that u ∈ ker(F (g)). Again, this
means that the composition u ◦ g = 0. Thus we obtain the commutative diagramm:

A B C

M

g

0

h

u

which means that Im(g) ⊂ ker(u). Hence, u descends to a morphism u : B/ Im(g) ∼=
C → M and hence we can complete the diagramm

A B C

M

g

0

h

u
ũ

which shows that u = ũ ◦ h and hence that u ∈ Im(F (h)).

In this sense, we say that F is a left-exact contravariant functor. The main goal of
homological algebra is then to study systematically the failure of the surjection on the
sequence above. The main construction is to associate to any module A a sequence
of modules Hi(A) for i ≥ 0 such that H0(A) = F (A) and for any exact sequence
0 → A → B → C → 0 we get a long exact sequence

0 → F (C) → F (B) → F (A) → H1(C) → H1(B) → H1(A) → H2(C) · · · (1.1)
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The way in which we shall construct the various Hi and the long exact sequence above
has nothing to do with modules in particular, and in fact the same construction works
over any abelian category (once one has a left/right exact functor plus some mild tech-
nical conditions).

In our particular case, when F = Hom(−,M), the groups Hi(A) are called Ext
groups Hi(A) = Exti(A,N). Our aim in these lectures is to construct these groups
and to show that they satisfy the required properties.

1.1 The role of free objects
Let us show one instance when if g : A → B is injective, then we know that F (g) is
surjective.

Lemma 5. Assume that g : A → B is injective and that there is a retraction r : B → A,
i.e., such that r ◦ g = Id. Then F (B) → F (A) is surjective.

Proof. We have induced maps F (A)
F (r)−−−→ F (B)

F (g)−−−→ F (A) whose composition is
F (IdA) = IdF (A). But then F (g) must be surjective.

A particular example is the following:

Lemma 6. Let 0 → A
g−→ B

h−→ C → 0 be a short exact sequence and assume that C
is free, C ∼= RI . Then, F (B) → F (A) is surjective and in particular the sequence

0 → F (C)
F (h)−−−→ F (B)

F (g)−−−→ F (A) → 0

is exact.

Proof. We only need to prove surjectivity of the map F (g). We want to apply the
previous lemma. This follows by the following lemma:

Lemma 7. Assume that 0 → A
g−→ B

h−→ C → 0 is exact and that C ∼= RI is free.
Then, we have an isomorphism B ∼= A ⊕ C compatible with the maps above, and in
particular the map A → B has a retraction.

Proof. Let ei ∈ RI be the natural basis, for i ∈ I . Then, we know by the universal
product of direct sum, that to give a map RI → B is the same as to give an element
bi ∈ B for any i ∈ I . The map is then the unique one that sends ei to bi. So,
we choose bi ∈ B such that h(bi) = ei. This defines a map s : RI → B, which
is injective because h ◦ s = Id. We want to show that C ∼= g(A) ⊕ s(C). But
g(A)∩ s(C) = 0 because if b ∈ B is an element in this intersection, then we can write
b = g(a) = s(c) but h(b) = 0 since b ∈ g(A) = ker(h) and also h(b) = h(s(c)) = c
hence c = 0. So g(A)⊕ s(C) ⊂ B. To prove equality, notice that for any b ∈ B then
b− s(h(b)) ∈ g(A).
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1.2 Free resolutions
To compute the Ext modules, we shall use free (later, projective) resolutions. The
reason why this is the case will be clear in the later lectures.

Definition 8. A complex of modules is a sequence of maps of R-modules

· · · fi+2−−−→ Ai+1
fi+1−−−→ Ai

fi−→ Ai−1 · · ·

such that fi ◦ fi+1 = 0 for every i ∈ Z. A cochain complex of modules is the same
thing but with increasing indeces.

Usually, a cochain complex satisfies Ai = 0 for i < 0, so most of the times it looks
like

· · · f3−→ A2
f2−→ A1

f1−→ A0 → 0

and a cochain complex like

0 → A0
f0−→ A1

f1−→ A2 · · · .

We denote a complex by (M•, f•).

Definition 9. If (M•, f•) is a complex, we define its homology groups as

Hi(M•) :=
ker(fi)

Im(fi+1)
.

In particular, a complex is exact (as a sequence of maps) if and only if Hi(A•) = 0
for every i.
Remark 1. If M• is a chain complex, then we can apply Hom(−,M) = F to it, and
obtain a cochain complex (because F respects composition, and sends the zero map to
the zero map.

The way one computes Ext groups (or cohomology in general of conotrovariant
factors) is using free (or projective) resolutions.

Definition 10. A free-resolution of a module A is a exact chain complex

· · · f3−→ A2
f2−→ A1

f1−→ A0
f0−→ A → 0

where each Ai is a free R-module for i ≥ 0 So, in particular, coker(f1) ∼= A.

Lemma 11. Any module A admits a free resolution.

Proof. Consider the free module RA generated by elements of A. So the canonical ba-
sis of RA is ea for a ∈ A and any element of RA can be written uniquely as

∑
a∈A raea

where ra ∈ R and ra ̸= 0 only for finitely a ∈ A. There is a natural map RA → A
which sends ea 7→ a. This is clearly surjective, and the kernel K1 ⊂ RA is again an
R-module. Now, we apply the same construction for K1, and we obtain a surjection
RK1 → K1 with kernel K2. By reiterating this, we obtain a sequence of maps

· · · → RK2 → RK1 → RA → A → 0

which is exact by construction.
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Note that if A is Noetherian, then we can construct a free resolution all of whose
terms are finitely generated (why?).

Remark 2. If A is a Noetherian module, it is not true in general that A admits a fi-
nite free resolution. In fact, Serre showed that every Noetherian module A admits a
finite free resolution if and only if the ring R is regular (a definition from algebraic
geometry). This was one of the first instances where homological algebra was used in
algebraic geometry.

For instance, if a ∈ R is not a zero-divisor, then R
a−→ R → R/(a) → 0 is a free

resolution of R/(a).
Another example: let now a field K and let R = K[x, y]. Then we can see K as a

R-module via the isomorphism K ∼= K[x, y]/(x, y). If we want to resolve K, then we
can start with the quotient map above

K[x, y] → K → 0

whose kernel is the maximal ideal (x, y). Now, consider the surjective map R2 →
(x, y) which sends e1 to x and e2 to y. So we obtain

K[x, y]2 → K[x, y] → K → 0 (1.2)
e1 → x (1.3)
e2 → y (1.4)

Then, the kernel K of this last map is given by pairs (f, g) ∈ R2 : fx+ gy = 0. Since
K[x, y] is a UFD and since both x and y are irreducible hence primes, x must divide g
and y must divide f and then we necessarily have that the kernel is {(yh,−xh) : h ∈
R} ⊂ R2. In particular, the map R → K sending h to (yh,−xh) is an isomorphism,
and we finish our resolution

0 → K[x, y] → K[x, y]2 → K[x, y] → K → 0.

Note that resolutions are not unique. But, as we shall see, they are always homotopic
one to the other.

Let us now prove a useful lemma.

Lemma 12. Let A• be a free resolution of A. Let F (A•) be the associated cochain
complex. Then, H0(F (A•)) ∼= F (A).

This says that the kernel of F (A0) → F (A1) does not depend on the chosen reso-
lution.

Proof. Consider the free resolution · · ·A1
f0−→ A0

π−→ A. Then we obtain two short
exact sequences

0 → ker(π) → A0
π−→ A → 0

and hence that F (A) = ker(F (A0) → F (ker(π))). Then, we obtain another sequence
for ker(π)), namely

0 → ker(f0) → A1 → ker(π) → 0
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from which we deduce that F (ker(π))) → F (A1) is injective. Hence,

F (A) = ker(F (A0) → F (ker(π))) = kerF (A0) → F (A1)).

Note that we haven’t used that all the Ai are free in this lemma. One of the main
results that we are going to prove in the next lectures is this:

Theorem 13. For any free resolution A• of A, the cohomology groups Hi of the
cochain complex F (A•) do not depend on the chosen resolution. One then defines
Exti(A,M) = Hi(F (A•)).

So Ext0(A,M) = F (A) = Hom(A,M). For instance, let us compute Ext for our
examples.

1. If R is a ring and a ∈ R is not a zero divisor, then R
a−→ R is a free res-

olution of R/(a). Let us now compute Exti(R/(a),M). All we have to do
is to apply Hom(−,M) to the free resolution and then compute cohomology.
But Hom(R,M) = M hence we get a cochain complex M

r−→ M . Then
Ext0(R/(a),M) = M [a] and Ext1(R/(a),M) = M/aM .

2. If R = K[x, y] and M = R let us compute Exti(K,R) where K ∼= K[x, y]/(x, y).
We use the free resolution from above. By applying Hom(−, R) we find a
cochain complex

R → R2 → R

where the first map sends 1 7→ (x, y) and the second map sends (1, 0) 7→ y and
(0, 1) 7→ −x. Thus we see that Exti(K,R) = 0 for i = 0, 1 and Ext2(K,R) =
K. All the others are zero.

The plan for the following lectures:

1. Substitute free resolution with projective resolutions.

2. Show that any two projective resolutions are homotopy equivalent, hence they
yield the same cohomology groups.

3. Show that with this construction we obtain the long exact sequence mentioned
in (1.1).
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