
Lecture 3

Domenico Valloni

1 Finitely generated modules over P.I.D
The aim of this lecture is to show how to classify finitely generated modules over PID.
For instance, if we choose R = Z, we know that finitely generated modules are finitely
generated abelian groups. By the structure theorem of abelian groups, we can then
writen any such module M uniquely as

M ∼= Zn ⊕
k⊕

i=1

Z/pαi
i Z

where αi ≥ 1 and the pi are primes of Z, not necessarily distinct. We shall prove a
similar result when Z is replaced by any PID.

Let us begin with some general ideas which work over any Noetherian commutative
ringR. LetM be a finitely generatedR-module. By definition, we can find a surjection

Rs f−→ M . Now, ker(f) is a submodule of Rs, hence finitely generated because R is
Noetherian. In particular, we can find another surjection Rt → ker(f). In this way we
get an exact sequence (which we call a presentation of M )

Rt g−→ Rs f−→M

and the first isomorphism theorem tells us that M ∼= Rs/ ker(f) and since ker(f) =
Im(g) we also have M ∼= Rs/ Im(g). This means that M is generated by s elements
with t relations between them. So our first observation: given any map of modules
g : Rs → Rt we can associate a module M = Rt/ Im(f), and any finitely generated
module M can be constructed in this way.

Now, we notice that two maps g, g′ : Rt → Rs may yield the same module M
(same = isomorphic). For instance, let ϕ ∈ Aut(Rs) be a module automorphism and
consider g′ = ϕ ◦ g. Then we clearly have an isomorphism

Rs/ Im(g) ∼= Rs/ Im(g′),

and the automorphism is induced by ϕ. Similarly, if ψ ∈ Aut(Rt) then one easily
checks that both g and g ◦ ψ yield isomorphism R-modules. Thus, we come to the
following realization:
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To classify finitely generated modules over a noetherian ring R, it is enought to
classify elements of HomR(R

t, Rs) up to pre- and post-composition by elements
of Aut(Rt) and Aut(Rs) (with varying s and t).

This is useful, because we can now interpret elements of HomR(R
t, Rs) as matri-

ces. Let e1, e2, · · · , et be the canonical basis of Rt and e1, e2, · · · , es be the canonical
basis of Rs. For any f ∈ HomR(R

t, Rs) we can write

f(ei) =

s∑
j=1

ajiej

and we associate to any f the matrix

(f(e1), f(e2), · · · , f(et)) =


a11 a12 a13 . . . a1t
a21 a22 a23 . . . a2t

...
...

...
. . .

...
as1 as2 as3 . . . ast

 .
It is easy to see that this defines a bijection

HomR(R
t, Rs)

1: 1←−→Ms×t(R).

Now, let f ∈ HomR(R
t, Rs) with associated matrix A ∈ Ms×t(R) and let ϕ ∈

Aut(Rs). What is the matrix associated to ϕ ◦ f ∈ HomR(R
t, Rs)? Again, this is

simple: as ϕ ∈ Aut(Rs), we can associate to it a matrix B ∈ Ms×s(R) by the same
reasoning. Then, under the above correspondence, one sees that the matrix associated
to ϕ ◦ f is nothing but B ·A (usual matrix multiplication).

Lemma 1. A matrix A ∈Ms×s(R) is invertible if and only if det(A) is a unit in R.

Proof. IfA is invertible, then there is a matrixB such thatAB = 1, hence det(A) det(B) =
1, which shows that first direction.

To show the other direction, let adj(A) be the adjoint matrix of A. By the Cramer
rule we then have

adj(A) ·A = det(A) Ids .

Therefore, if det(A) is invertible in R, det(A)−1adj(A) gives the inverse of A.

So, we have come to the following fact:

To classify finitely generated modules over a noetherian ring R, it is enought to
classify matrices of Ms×t(R) up to multiplication by invertible matrices on both
sides.

As it turns out, we can do this rather easily when R is a PID, thanks to Smith’s
normal form.
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Theorem 2 (Smith normal form). Let R be a PID and let A ∈ Ms×t(R). Then, there
are two invertible matrices S ∈Ms×s(R) and T ∈Mt×t(R) and r ≤ min{s, t} such
that

SAT =



d1 0 0 . . . 0 0 · · ·
0 d2 0 . . . 0 0 · · ·
0 0 d3 . . . 0 0 · · ·
...

...
...

. . .
...

0 0 0 . . . dr 0 · · ·
0 0 0 . . . 0 0 · · ·
...

...
...

...
...

...
. . .


with d1

∣∣ d2 ∣∣ d3 · · · uniquely determined up to units of R.

Proof. Recall that if R is a PID and if a, b ∈ R we can define the greatest common
divisor gcd(a, b) as a generator of the ideal (a, b). This is well-defined up to units. For
a ∈ R write a prime decomposition a = p1p2 · · · pk, where each pi is prime. We define
µ(a) = k. This is well defined, moreover, if a divides b then µ(a) ≤ µ(b) and if a
divides b and µ(a) = µ(b) then a = ub with u a unit. Consider the following set:

A = {B = SAT : S ∈ GLs(R) and T ∈ GLt(R)}.

Note that if A′ is obtained from A by switching rows or columns, or by adding to one
row/column a multiplie of another, then A′ ∈ A. Now, pick A′ = (a′ij) ∈ A such that
µ(a′11) is minimal (i.e., for any A′′ = (a′′ij) ∈ A we have µ(a′′11) ≥ µ(a′11)).

I claim that a′11 divides every other entry of the form a′1i and a′i1 for every possible
i. Since we can switch rows and columns, we can simply show that a′11 divides a′12.
Now, let d be a gcd of a′11 and a′12 and write α11 = a′11/d and α12 = a′12/d. If
x, y ∈ R are such that xa′11 + ya′12 = d then xα11 + yα12 = 1. Now, consider the
t× t matrix

C ′ =


x −α12 0 . . . 0
y α11 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


it is easy to see that det(C ′) = 1 and hence that A′C ′ ∈ A. But the first entry of A′C ′

is d. By the minimality of A′ we hence must have µ(d) ≥ µ(a11) and since d
∣∣ a′11 by

construction, we deduce thata′11 = gcd(a′11, a
′
12). This shows that a′11 divides all the

first row and first column entries. But then, by performing elementary operations, and
calling d1 = a′11, we can easily bring the matrix A′ to the form

C ′ =


d1 0 0 . . . 0
0 ∗ ∗ . . . ∗
0 ∗ ∗ . . . ∗
...

...
...

. . .
...

0 ∗ ∗ . . . ∗


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We now procede as before, but only modifying the smaller matrix inside. After having
found in this way d2, we notice that by adding the first row of the matrix above to its
second row (where there is d2) we must have that d1

∣∣ d2 by what we have shown
before. An iteration of this proves the theorem. We do not prove that the various di are
unique up to unit, but this follows e.g. from their intrinsic description using minors of
the matrix.

What does this tell us about the structure of modules?

Corollary 3. Let R be a PID and let M be a finitely generated R-module. Then,

M ∼= Rn ⊕
⊕
i

R/(di)

with di+1

∣∣ di (note that I have reversed the order of divisibility from the Smith’s
normal form theorem).

If d = pa1
1 p

a2
2 · · · is a prime decomposition (which always exist because R is a

PID) we get by the chinese remainder theorem

R/(d) = ⊕iR/(pi)
ai .

In particular, we have

Corollary 4 (Second form). Let R be a PID and let M be a finitely generated R-
module. Then,

M ∼= Rn ⊕
⊕
i

R/(pi)
ai

where pi are (not necessarily distint) primes of R.

Note that the integer n is uniquely determined, and can be characterized as the
maximal number of R-linearly independent elements of M . That is

n = max{k ≥ 0: ∃m1,m2, · · ·mk ∈M :

k∑
i=1

aimi = 0 then a1 = a2 = · · · = ak = 0}.

We shall show now that the sequence of integers di appearing in Corollary 3 is unique
(up to units). The are called the elementary divisors of M . Thus, we can summarize
the structure theorem in this form:

Theorem 5. If R is a PID and M is a finitely generated module, then

M ∼= Rn ⊕
⊕
i

R/(di)

for a unique n and uniquely determined di ∈ R (up to unit) such that di+1

∣∣ di.
An immediate corollary of the structure theorem is the following

Definition 6. Let M be a left R-module, with R any ring. Define:
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1. Ann(M) = {a ∈ R : am = 0 for every m ∈M};

2. Ann(m) = {a ∈ R : am = 0} for m ∈M ;

3. Tor(M) = {m ∈M : am = 0 for a ∈ R, a not a zero divisor};

4. for a ∈ R put Torsa(M) =M [a] = {m ∈M : am = 0}.

One easily shows that

1. Ann(M) is a left and right ideal of R;

2. Ann(m) is an ideal if R is commutative;

3. Tor(M) is a submodule of M if R is commutative;

4. M [a] is a submodule of M if R is commutative.

For instance, let us show the third point. Clearly Tor(M) is closed under scalar multi-
plication if R is commutative. If now m1,m2 ∈ Tor(M) then there are two non-zero
divisors a1, a2 ∈ R such that a1m1 = a2m2 = 0. Hence, a1a2 is not a zero divisor
either, and a1a2(m1 +m2) = 0. One easily proves:

Lemma 7. We have Ann(R/(d)) = (d) and R/(d)[a] ∼= R/gcd(a, d). Moreover,

Tor(Rn ⊕
⊕
i

R/(di)) =
⊕
i

R/(di).

Proof. If a ∈ Ann(R/(d)) when a · (1 + (d)) ⊂ (d) which means that a ∈ (d).
Then since d ∈ Ann(R/(d)) we conclude. For the second point, assume there is
x + (d) ∈ R/(d) with x ∈ R such that ax + (d) = (d). This means that ax ∈ (d).
Using the prime decomposition we see that x ∈ (d/ gcd(a, d)) necessarily. Put d′ =
d/ gcd(a, d). Then

R/(d)[a] = (d′)/(d) ⊂ R/(d)
note that (d) ⊂ (d′) so we can form the quotient. We then conclude since the map

R/ gcd(a, d)
d′

−→ (d′)/(d)

given by x+ (gcd(a, d)) 7→ d′x+ (d) is a R-module isomorphism.

In order to get the uniqueness of the di in the theorem, we need to consider the
primary decomposition of torsion modules:

Definition 8. Let M be a R-module, with R a PID. For a prime p of R, let Mp ⊂ M
be the submodule given by

Mp = {m ∈M : there is n ∈ N such that pn ·m = 0}.

Lemma 9. Let M be a (not necessarily finitely generated) R-module, with R a PID,
then Tors(M) = ⊕pMp, where the direct sum ranges over all the primes of R (up to
multiplication by a unit).
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Proof. To show that the sum is direct, we need to show that if p and q are coprime
primes of R then Mp ∩ Mq = 0. By coprimality, and since R is a PID, for any
a, b ≥ 0 we can write 1 = xpa + yqb with x, y ∈ R. Now, if m ∈ M satisfies both
pam = qbm = 0 it means that m = (xpa + yqb)m = 0. Hence, the submodule of M
generated by the various Mp is isomorphic to ⊕pMp. Now, pick any m ∈ Tors(M),
and consider the map R→M sending a 7→ am. Let d be a generator of the kernel, so
that Rm ∼= R/(d) ⊂M (note that d cannot be a unit since m is torsion). Consider the
prime factorization

d =
∏
i

pαi
i .

By the Chinese reminder theorem we have that

R/(d) ∼=
⊕
o

R/(pi)
αi

and that R/(pi)αi ⊂Mpi
. Thus, we that Rm ⊂ ⊕pMp hence Tor(M) = ⊕pMp.

Now we classify the various possible Mp:

Proposition 10. Assume that M is finitely generated and that Mp = M . Then, there
is a unique sequence of integers a1 ≥ a2 ≥ · · · ≥ ak such that

M = ⊕k
i=1R/(p

ai).

Proof. We need to show that if for two sequences a1 ≥ a2 ≥ · · · ≥ ak and b1 ≥ b2 ≥
· · · ≥ bl yield isomorphic modules then k = l and ai = bi for every i. We prove this
by induction on the length k. So, if k = 1, then R/(pa1) is a cyclic module (generated
by the image of 1). On the other hand, if

⊕l
j=1R/(p

bi)

is cyclic, then necessarily l = 1. Now, we only need to prove that R/(pn) ∼= R/(pm)
if and only if n = m. But Ann(R/(pn)) = (pn) and Ann(R/(pm)) = (pm), hence
the statement.

Assume now that we know the statement for all lengths ≤ k − 1 and we want to
prove it for k. So assume that

⊕k
i=1R/(p

ai) ∼= ⊕l
j=1R/(p

bj ).

For a finitely module M such that Mp = M define its exponent as the minimal n ≥ 0
such that pnM = 0. Note that this exist because M is finitely generated. Then the
exponent of⊕k

i=1R/(p
ai) is easily seen to be a1 (the greated power appearing). Hence,

since isomorphic modules have the same exponent, we deduce that a1 = b1 = e. In
particular both decompositions contain a factor of the form R/(pe). Now consider
M/(R/(pe)). This has two decomposition

M/(R/(pe)) = ⊕k
i=2R/(p

ai) ∼= ⊕l
j=2R/(p

bj )

and we conclude by induction.
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Now, it is easy to construct the various di. Explicitely, choose a finitely generated
torsion module M , and let Mp be the module

Mp = ⊕k
iR/(p

ap,i)

with ap,1 ≥ ap,2 ≥ ap,2 ≥ ap,k and we put ap,i = 0 for i > k. The, define di =∏
p p

ap,i . It is easy to show that di
∣∣ di+1.

1.1 Application: Jordan normal form
Let k be an algebraically closed field and let V be a finitely dimensional vector space.
Let F : V → V be an endomorphism. As an application of the previous result, we
show how to obtain the existence of the Jordan decomposition for F . The first key
observation is to note that there is a one-to-one correspondence (which work over any
field K)

{f.g. torsion K[x]−modules} ↔ {(V, F ) with V f.d. K−vector space, F ∈ End(V )}
(1.1)

The correspondence is constructed as follows. Let M be a finitely generated, torsion
K[x]−module. Then we know by the structure theorem that M is a finite direct sum
of modules of the form K[x]/(f) with deg(f) > 0 and hence in particular that M is a
finite dimensional vector space over K. Let now x ∈ K[x]. Since M is a module, we
have a multiplication map x : M →M which sends m 7→ xm. So multiplication by x
induces an element F ∈ EndK(V ). This defines a pair (V, F ) of a finite dimensional
K-vector space with an endomorphism.

On the other hand, let (V, F ) be as above. We want to define a K[x]-module
structure on V . But this is done by letting g(x) ∈ K[x] act on V as g(F ) ∈ EndK(V ).
In this way, we see V as a K[x]-module. To show that it is torsion, we consider for
instance the characteristic polynomial P (X) = det(x Id−F ) ∈ K[x]. We know that
P (F ) = 0 by the Cayley–Hamilton theorem and hence that (P ) ⊂ Ann(M). This
shows that M is torsion. Finally, it is clearly finitely generated, e.g., by a K-basis of
V .

Remark 1. This correspondence also preserves direct sums. In fact, it is an equivalence
of categories.

Now, assume K is algebraically closed and consider a pair (V, F ). This corre-
sponds to a module M over K[x]. But the only primes of K[x] are of the form (x− c)
for c ∈ K since K is algebraically closed. The primary decomposition M = ⊕pMp

yields a decomposition
(V, F ) = ⊕p(Vp, Fp)

and the further decomposition Mp = ⊕k
i=1R/(p

ai) as in the preveious section yields a
decomposition

(Vp, Fp) = ⊕k
i=1(Vp,i, Fp,i).

There are the Jordan blocks. Now, write p = (x− c) and consider the block Vp,i. This
corresponds to the module K[x]/(x− c)ai . A basis of the vector space K[x]/(x− c)ai
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is given by 1, x− c, (x− c)2, · · · , (x− c)ai−1. With respect to this basis, the action of
x is x(x− c)i = (x− c)i+1+ c(x− c)i if i < ai−1 and x(x− c)ai−1 = c(x− c)ai−1.
This means that on the block Vp,i F acts in the Jordan form

c 1 0 . . . 0
0 c 1 . . . 0
0 0 c . . . 0
...

...
...

... 1
0 0 0 . . . c


with respect to the basis above.

8


	1 Finitely generated modules over P.I.D
	1.1 Application: Jordan normal form


