## Lecture 3

## Domenico Valloni

## 1 Finitely generated modules over P.I.D

The aim of this lecture is to show how to classify finitely generated modules over PID. For instance, if we choose  $R=\mathbb{Z}$ , we know that finitely generated modules are finitely generated abelian groups. By the structure theorem of abelian groups, we can then writen any such module M uniquely as

$$M \cong \mathbb{Z}^n \oplus \bigoplus_{i=1}^k \mathbb{Z}/p_i^{\alpha_i} \mathbb{Z}$$

where  $\alpha_i \geq 1$  and the  $p_i$  are primes of  $\mathbb{Z}$ , not necessarily distinct. We shall prove a similar result when  $\mathbb{Z}$  is replaced by any PID.

Let us begin with some general ideas which work over any Noetherian commutative ring R. Let M be a finitely generated R-module. By definition, we can find a surjection  $R^s \xrightarrow{f} M$ . Now,  $\ker(f)$  is a submodule of  $R^s$ , hence finitely generated because R is Noetherian. In particular, we can find another surjection  $R^t \to \ker(f)$ . In this way we get an exact sequence (which we call a presentation of M)

$$R^t \xrightarrow{g} R^s \xrightarrow{f} M$$

and the first isomorphism theorem tells us that  $M \cong R^s/\ker(f)$  and since  $\ker(f) = \operatorname{Im}(g)$  we also have  $M \cong R^s/\operatorname{Im}(g)$ . This means that M is generated by s elements with t relations between them. So our first observation: given any map of modules  $g \colon R^s \to R^t$  we can associate a module  $M = R^t/\operatorname{Im}(f)$ , and any finitely generated module M can be constructed in this way.

Now, we notice that two maps  $g,g'\colon R^t\to R^s$  may yield the same module M (same = isomorphic). For instance, let  $\phi\in \operatorname{Aut}(R^s)$  be a module automorphism and consider  $g'=\phi\circ g$ . Then we clearly have an isomorphism

$$R^s/\operatorname{Im}(g) \cong R^s/\operatorname{Im}(g'),$$

and the automorphism is induced by  $\phi$ . Similarly, if  $\psi \in \operatorname{Aut}(R^t)$  then one easily checks that both g and  $g \circ \psi$  yield isomorphism R-modules. Thus, we come to the following realization:

To classify finitely generated modules over a noetherian ring R, it is enought to classify elements of  $\operatorname{Hom}_R(R^t,R^s)$  up to pre- and post-composition by elements of  $\operatorname{Aut}(R^t)$  and  $\operatorname{Aut}(R^s)$  (with varying s and t).

This is useful, because we can now interpret elements of  $\operatorname{Hom}_R(R^t,R^s)$  as matrices. Let  $e_1,e_2,\cdots,e_t$  be the canonical basis of  $R^t$  and  $e_1,e_2,\cdots,e_s$  be the canonical basis of  $R^s$ . For any  $f\in\operatorname{Hom}_R(R^t,R^s)$  we can write

$$f(e_i) = \sum_{j=1}^{s} a_{ji} e_j$$

and we associate to any f the matrix

$$(f(e_1), f(e_2), \cdots, f(e_t)) = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1t} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2t} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & a_{s3} & \dots & a_{st} \end{bmatrix}.$$

It is easy to see that this defines a bijection

$$\operatorname{Hom}_R(R^t, R^s) \stackrel{1: 1}{\longleftrightarrow} M_{s \times t}(R).$$

Now, let  $f \in \operatorname{Hom}_R(R^t, R^s)$  with associated matrix  $A \in M_{s \times t}(R)$  and let  $\phi \in \operatorname{Aut}(R^s)$ . What is the matrix associated to  $\phi \circ f \in \operatorname{Hom}_R(R^t, R^s)$ ? Again, this is simple: as  $\phi \in \operatorname{Aut}(R^s)$ , we can associate to it a matrix  $B \in M_{s \times s}(R)$  by the same reasoning. Then, under the above correspondence, one sees that the matrix associated to  $\phi \circ f$  is nothing but  $B \cdot A$  (usual matrix multiplication).

**Lemma 1.** A matrix  $A \in M_{s \times s}(R)$  is invertible if and only if  $\det(A)$  is a unit in R.

*Proof.* If A is invertible, then there is a matrix B such that AB = 1, hence det(A) det(B) = 1, which shows that first direction.

To show the other direction, let  $\mathrm{adj}(A)$  be the adjoint matrix of A. By the Cramer rule we then have

$$adj(A) \cdot A = det(A) \operatorname{Id}_{s}$$
.

Therefore, if det(A) is invertible in R,  $det(A)^{-1}adj(A)$  gives the inverse of A.  $\square$ 

So, we have come to the following fact:

To classify finitely generated modules over a noetherian ring R, it is enought to classify matrices of  $M_{s\times t}(R)$  up to multiplication by invertible matrices on both sides.

As it turns out, we can do this rather easily when  ${\cal R}$  is a PID, thanks to Smith's normal form.

**Theorem 2** (Smith normal form). Let R be a PID and let  $A \in M_{s \times t}(R)$ . Then, there are two invertible matrices  $S \in M_{s \times s}(R)$  and  $T \in M_{t \times t}(R)$  and  $r \leq \min\{s,t\}$  such that

$$SAT = \begin{bmatrix} d_1 & 0 & 0 & \dots & 0 & 0 & \dots \\ 0 & d_2 & 0 & \dots & 0 & 0 & \dots \\ 0 & 0 & d_3 & \dots & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots & & & \\ 0 & 0 & 0 & \dots & d_r & 0 & \dots \\ \hline 0 & 0 & 0 & \dots & 0 & 0 & \dots \\ \vdots & \ddots \end{bmatrix}$$

with  $d_1 \mid d_2 \mid d_3 \cdots$  uniquely determined up to units of R.

*Proof.* Recall that if R is a PID and if  $a,b \in R$  we can define the greatest common divisor  $\gcd(a,b)$  as a generator of the ideal (a,b). This is well-defined up to units. For  $a \in R$  write a prime decomposition  $a = p_1 p_2 \cdots p_k$ , where each  $p_i$  is prime. We define  $\mu(a) = k$ . This is well defined, moreover, if a divides b then  $\mu(a) \leq \mu(b)$  and if a divides b and  $\mu(a) = \mu(b)$  then a = ub with a a unit. Consider the following set:

$$\mathcal{A} = \{B = SAT \colon S \in \operatorname{GL}_s(R) \text{ and } T \in \operatorname{GL}_t(R)\}.$$

Note that if A' is obtained from A by switching rows or columns, or by adding to one row/column a multiplie of another, then  $A' \in \mathcal{A}$ . Now, pick  $A' = (a'_{ij}) \in \mathcal{A}$  such that  $\mu(a'_{11})$  is minimal (i.e., for any  $A'' = (a''_{ij}) \in \mathcal{A}$  we have  $\mu(a''_{11}) \geq \mu(a'_{11})$ ). I claim that  $a'_{11}$  divides every other entry of the form  $a'_{1i}$  and  $a'_{i1}$  for every possible

I claim that  $a'_{11}$  divides every other entry of the form  $a'_{1i}$  and  $a'_{i1}$  for every possible i. Since we can switch rows and columns, we can simply show that  $a'_{11}$  divides  $a'_{12}$ . Now, let d be a gcd of  $a'_{11}$  and  $a'_{12}$  and write  $\alpha_{11} = a'_{11}/d$  and  $\alpha_{12} = a'_{12}/d$ . If  $x, y \in R$  are such that  $xa'_{11} + ya'_{12} = d$  then  $x\alpha_{11} + y\alpha_{12} = 1$ . Now, consider the  $t \times t$  matrix

$$C' = \begin{bmatrix} x & -\alpha_{12} & 0 & \dots & 0 \\ y & \alpha_{11} & 0 & \dots & 0 \\ \hline 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

it is easy to see that  $\det(C')=1$  and hence that  $A'C'\in\mathcal{A}$ . But the first entry of A'C' is d. By the minimality of A' we hence must have  $\mu(d)\geq \mu(a_{11})$  and since  $d\mid a'_{11}$  by construction, we deduce that  $a'_{11}=\gcd(a'_{11},a'_{12})$ . This shows that  $a'_{11}$  divides all the first row and first column entries. But then, by performing elementary operations, and calling  $d_1=a'_{11}$ , we can easily bring the matrix A' to the form

$$C' = \begin{bmatrix} d_1 & 0 & 0 & \dots & 0 \\ \hline 0 & * & * & \dots & * \\ 0 & * & * & \dots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & * & * & \dots & * \end{bmatrix}$$

We now procede as before, but only modifying the smaller matrix inside. After having found in this way  $d_2$ , we notice that by adding the first row of the matrix above to its second row (where there is  $d_2$ ) we must have that  $d_1 \mid d_2$  by what we have shown before. An iteration of this proves the theorem. We do not prove that the various  $d_i$  are unique up to unit, but this follows e.g. from their intrinsic description using minors of the matrix.  $\Box$ 

What does this tell us about the structure of modules?

**Corollary 3.** Let R be a PID and let M be a finitely generated R-module. Then,

$$M \cong R^n \oplus \bigoplus_i R/(d_i)$$

with  $d_{i+1} \mid d_i$  (note that I have reversed the order of divisibility from the Smith's normal form theorem).

If  $d=p_1^{a_1}p_2^{a_2}\cdots$  is a prime decomposition (which always exist because R is a PID) we get by the chinese remainder theorem

$$R/(d) = \bigoplus_i R/(p_i)^{a_i}$$
.

In particular, we have

**Corollary 4** (Second form). Let R be a PID and let M be a finitely generated R-module. Then,

$$M \cong R^n \oplus \bigoplus_i R/(p_i)^{a_i}$$

where  $p_i$  are (not necessarily distint) primes of R.

Note that the integer n is uniquely determined, and can be characterized as the maximal number of R-linearly independent elements of M. That is

$$n = \max\{k \ge 0 : \exists m_1, m_2, \dots m_k \in M : \sum_{i=1}^k a_i m_i = 0 \text{ then } a_1 = a_2 = \dots = a_k = 0\}.$$

We shall show now that the sequence of integers  $d_i$  appearing in Corollary 3 is unique (up to units). The are called the *elementary divisors* of M. Thus, we can summarize the structure theorem in this form:

**Theorem 5.** If R is a PID and M is a finitely generated module, then

$$M \cong R^n \oplus \bigoplus_i R/(d_i)$$

for a unique n and uniquely determined  $d_i \in R$  (up to unit) such that  $d_{i+1} \mid d_i$ .

An immediate corollary of the structure theorem is the following

**Definition 6.** Let M be a left R-module, with R any ring. Define:

- 1.  $Ann(M) = \{a \in R : am = 0 \text{ for every } m \in M\};$
- 2.  $Ann(m) = \{a \in R : am = 0\} \text{ for } m \in M;$
- 3.  $Tor(M) = \{m \in M : am = 0 \text{ for } a \in R, a \text{ not a zero divisor}\};$
- 4. for  $a \in R$  put  $Tors_a(M) = M[a] = \{m \in M : am = 0\}.$

One easily shows that

- 1. Ann(M) is a left and right ideal of R;
- 2. Ann(m) is an ideal if R is commutative;
- 3. Tor(M) is a submodule of M if R is commutative;
- 4. M[a] is a submodule of M if R is commutative.

For instance, let us show the third point. Clearly Tor(M) is closed under scalar multiplication if R is commutative. If now  $m_1, m_2 \in Tor(M)$  then there are two non-zero divisors  $a_1, a_2 \in R$  such that  $a_1m_1 = a_2m_2 = 0$ . Hence,  $a_1a_2$  is not a zero divisor either, and  $a_1a_2(m_1 + m_2) = 0$ . One easily proves:

**Lemma 7.** We have Ann(R/(d)) = (d) and  $R/(d)[a] \cong R/\gcd(a,d)$ . Moreover,

$$\operatorname{Tor}(R^n \oplus \bigoplus_i R/(d_i)) = \bigoplus_i R/(d_i).$$

*Proof.* If  $a \in \operatorname{Ann}(R/(d))$  when  $a \cdot (1+(d)) \subset (d)$  which means that  $a \in (d)$ . Then since  $d \in \operatorname{Ann}(R/(d))$  we conclude. For the second point, assume there is  $x+(d) \in R/(d)$  with  $x \in R$  such that ax+(d)=(d). This means that  $ax \in (d)$ . Using the prime decomposition we see that  $x \in (d/\gcd(a,d))$  necessarily. Put  $d'=d/\gcd(a,d)$ . Then

$$R/(d)[a] = (d')/(d) \subset R/(d)$$

note that  $(d) \subset (d')$  so we can form the quotient. We then conclude since the map

$$R/\gcd(a,d) \xrightarrow{d'} (d')/(d)$$

given by  $x + (\gcd(a, d)) \mapsto d'x + (d)$  is a R-module isomorphism.  $\square$ 

In order to get the uniqueness of the  $d_i$  in the theorem, we need to consider the primary decomposition of torsion modules:

**Definition 8.** Let M be a R-module, with R a PID. For a prime p of R, let  $M_p \subset M$  be the submodule given by

$$M_p = \{ m \in M : \text{ there is } n \in \mathbb{N} \text{ such that } p^n \cdot m = 0 \}.$$

**Lemma 9.** Let M be a (not necessarily finitely generated) R-module, with R a PID, then  $Tors(M) = \bigoplus_p M_p$ , where the direct sum ranges over all the primes of R (up to multiplication by a unit).

*Proof.* To show that the sum is direct, we need to show that if p and q are coprime primes of R then  $M_p\cap M_q=0$ . By coprimality, and since R is a PID, for any  $a,b\geq 0$  we can write  $1=xp^a+yq^b$  with  $x,y\in R$ . Now, if  $m\in M$  satisfies both  $p^am=q^bm=0$  it means that  $m=(xp^a+yq^b)m=0$ . Hence, the submodule of M generated by the various  $M_p$  is isomorphic to  $\oplus_p M_p$ . Now, pick any  $m\in \operatorname{Tors}(M)$ , and consider the map  $R\to M$  sending  $a\mapsto am$ . Let d be a generator of the kernel, so that  $Rm\cong R/(d)\subset M$  (note that d cannot be a unit since m is torsion). Consider the prime factorization

$$d = \prod_{i} p_i^{\alpha_i}.$$

By the Chinese reminder theorem we have that

$$R/(d) \cong \bigoplus_{o} R/(p_i)^{\alpha_i}$$

and that  $R/(p_i)^{\alpha_i} \subset M_{p_i}$ . Thus, we that  $Rm \subset \oplus_p M_p$  hence  $\mathrm{Tor}(M) = \oplus_p M_p$ .  $\square$ 

Now we classify the various possible  $M_n$ :

**Proposition 10.** Assume that M is finitely generated and that  $M_p = M$ . Then, there is a unique sequence of integers  $a_1 \ge a_2 \ge \cdots \ge a_k$  such that

$$M = \bigoplus_{i=1}^k R/(p^{a_i}).$$

*Proof.* We need to show that if for two sequences  $a_1 \ge a_2 \ge \cdots \ge a_k$  and  $b_1 \ge b_2 \ge \cdots \ge b_l$  yield isomorphic modules then k = l and  $a_i = b_i$  for every i. We prove this by induction on the length k. So, if k = 1, then  $R/(p^{a_1})$  is a cyclic module (generated by the image of 1). On the other hand, if

$$\bigoplus_{i=1}^{l} R/(p^{b_i})$$

is cyclic, then necessarily l=1. Now, we only need to prove that  $R/(p^n)\cong R/(p^m)$  if and only if n=m. But  $\operatorname{Ann}(R/(p^n))=(p^n)$  and  $\operatorname{Ann}(R/(p^m))=(p^m)$ , hence the statement.

Assume now that we know the statement for all lengths  $\leq k-1$  and we want to prove it for k. So assume that

$$\bigoplus_{i=1}^k R/(p^{a_i}) \cong \bigoplus_{j=1}^l R/(p^{b_j}).$$

For a finitely module M such that  $M_p=M$  define its exponent as the minimal  $n\geq 0$  such that  $p^nM=0$ . Note that this exist because M is finitely generated. Then the exponent of  $\bigoplus_{i=1}^k R/(p^{a_i})$  is easily seen to be  $a_1$  (the greated power appearing). Hence, since isomorphic modules have the same exponent, we deduce that  $a_1=b_1=e$ . In particular both decompositions contain a factor of the form  $R/(p^e)$ . Now consider  $M/(R/(p^e))$ . This has two decomposition

$$M/(R/(p^e)) = \bigoplus_{i=2}^k R/(p^{a_i}) \cong \bigoplus_{j=2}^l R/(p^{b_j})$$

and we conclude by induction.

Now, it is easy to construct the various  $d_i$ . Explicitly, choose a finitely generated torsion module M, and let  $M_p$  be the module

$$M_p = \bigoplus_{i=1}^k R/(p^{a_{p,i}})$$

with  $a_{p,1} \ge a_{p,2} \ge a_{p,2} \ge a_{p,k}$  and we put  $a_{p,i} = 0$  for i > k. The, define  $d_i = \prod_p p^{a_{p,i}}$ . It is easy to show that  $d_i \mid d_{i+1}$ .

## 1.1 Application: Jordan normal form

Let k be an algebraically closed field and let V be a finitely dimensional vector space. Let  $F \colon V \to V$  be an endomorphism. As an application of the previous result, we show how to obtain the existence of the Jordan decomposition for F. The first key observation is to note that there is a one-to-one correspondence (which work over any field K)

$$\{\text{f.g. torsion } K[x] - \text{modules}\} \leftrightarrow \{(V, F) \text{ with } V \text{ f.d. } K - \text{vector space, } F \in \text{End}(V)\}$$

The correspondence is constructed as follows. Let M be a finitely generated, torsion K[x]—module. Then we know by the structure theorem that M is a finite direct sum of modules of the form K[x]/(f) with  $\deg(f)>0$  and hence in particular that M is a finite dimensional vector space over K. Let now  $x\in K[x]$ . Since M is a module, we have a multiplication map  $x\colon M\to M$  which sends  $m\mapsto xm$ . So multiplication by x induces an element  $F\in \operatorname{End}_K(V)$ . This defines a pair (V,F) of a finite dimensional K-vector space with an endomorphism.

On the other hand, let (V,F) be as above. We want to define a K[x]-module structure on V. But this is done by letting  $g(x) \in K[x]$  act on V as  $g(F) \in \operatorname{End}_K(V)$ . In this way, we see V as a K[x]-module. To show that it is torsion, we consider for instance the characteristic polynomial  $P(X) = \det(x \operatorname{Id} - F) \in K[x]$ . We know that P(F) = 0 by the Cayley–Hamilton theorem and hence that  $P(F) \subset \operatorname{Ann}(M)$ . This shows that M is torsion. Finally, it is clearly finitely generated, e.g., by a K-basis of V.

*Remark* 1. This correspondence also preserves direct sums. In fact, it is an equivalence of categories.

Now, assume K is algebraically closed and consider a pair (V,F). This corresponds to a module M over K[x]. But the only primes of K[x] are of the form (x-c) for  $c \in K$  since K is algebraically closed. The primary decomposition  $M = \bigoplus_p M_p$  yields a decomposition

$$(V,F) = \oplus_p(V_p,F_p)$$

and the further decomposition  $M_p = \bigoplus_{i=1}^k R/(p^{a_i})$  as in the preveious section yields a decomposition

$$(V_p, F_p) = \bigoplus_{i=1}^k (V_{p,i}, F_{p,i}).$$

There are the Jordan blocks. Now, write p=(x-c) and consider the block  $V_{p,i}$ . This corresponds to the module  $K[x]/(x-c)^{a_i}$ . A basis of the vector space  $K[x]/(x-c)^{a_i}$ 

is given by  $1, x-c, (x-c)^2, \cdots, (x-c)^{a_i-1}$ . With respect to this basis, the action of x is  $x(x-c)^i=(x-c)^{i+1}+c(x-c)^i$  if  $i< a_i-1$  and  $x(x-c)^{a_i-1}=c(x-c)^{a_i-1}$ . This means that on the block  $V_{p,i}$  F acts in the Jordan form

$$\begin{bmatrix} c & 1 & 0 & \dots & 0 \\ 0 & c & 1 & \dots & 0 \\ 0 & 0 & c & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & 1 \\ 0 & 0 & 0 & \dots & c \end{bmatrix}$$

with respect to the basis above.